terça-feira, março 25, 2025
HomeNanotechnologyThe pathways for nanoparticle transport across tumour endothelium

The pathways for nanoparticle transport across tumour endothelium


  • Hobbs, S. K. et al. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc. Natl Acad. Sci. USA 95, 4607–4612 (1998).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • He, H., Liu, L., Morin, E. E., Liu, M. & Schwendeman, A. Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures. Acc. Chem. Res. 52, 2445–2461 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kingston, B. R. et al. Specific endothelial cells govern nanoparticle entry into solid tumors. ACS Nano 15, 14080–14094 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nguyen, L. N. M. et al. The exit of nanoparticles from solid tumours. Nat. Mater. 22, 1261–1272 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nguyen, L. N. M. et al. The mechanisms of nanoparticle delivery to solid tumours. Nat. Rev. Bioeng. 2, 201–213 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fung, K. Y. Y., Fairn, G. D. & Lee, W. L. Transcellular vesicular transport in epithelial and endothelial cells: challenges and opportunities. Traffic 19, 5–18 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Oh, P. et al. In vivo proteomic imaging analysis of caveolae reveals pumping system to penetrate solid tumors. Nat. Med. 20, 1062–1068 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Basagiannis, D. et al. VEGF induces signalling and angiogenesis by directing VEGFR2 internalisation through macropinocytosis. J. Cell Sci. 129, 4091–4104 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pulaski, B. A. & Ostrand‐Rosenberg, S. Mouse 4T1 breast tumor model. Curr. Protoc. Immunol. 39, 20.2.1–20.2.16 (2000).

    Article 

    Google Scholar
     

  • Parton, R. G. & Simons, K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 8, 185–194 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kerr, M. C. & Teasdale, R. D. Defining macropinocytosis. Traffic 10, 364–371 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Swanson, J. A. & Watts, C. Macropinocytosis. Trends Cell Biol. 5, 424–428 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kirchhausen, T., Macia, E. & Pelish, H. E. Use of dynasore, the small molecule inhibitor of dynamin, in the regulation of endocytosis. Methods Enzymol. 438, 77–93 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Koivusalo, M. et al. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell Biol. 188, 547–563 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhu, M. et al. Machine-learning-assisted single-vessel analysis of nanoparticle permeability in tumour vasculatures. Nat. Nanotechnol. 18, 657–666 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang, L. et al. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 569, 565–569 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Commisso, C., Flinn, R. J. & Bar-Sagi, D. Determining the macropinocytic index of cells through a quantitative image-based assay. Nat. Protoc. 9, 182–192 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Carmichael, S. W., Brooks, J. C., Malhotra, R. K., Wakade, T. D. & Wakade, A. R. Ultrastructural demonstration of exocytosis in the intact rat adrenal medulla. J. Electron Microsc. Tech. 12, 316–322 (1989).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hastoy, B., Clark, A., Rorsman, P. & Lang, J. Fusion pore in exocytosis: more than an exit gate? A β-cell perspective. Cell Calcium 68, 45–61 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sykes, E. A. et al. Tailoring nanoparticle designs to target cancer based on tumor pathophysiology. Proc. Natl Acad. Sci. USA 113, E1142–E1151 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ahn, W., Singla, B., Marshall, B. & Csányi, G. Visualizing membrane ruffle formation using scanning electron microscopy. J. Vis. Exp. https://doi.org/10.3791/62658 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lambies, G. & Commisso, C. Macropinocytosis, functions and mechanisms. Subcell. Biochem. 98, 15–40 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fullstone, G., Wood, J., Holcombe, M. & Battaglia, G. Modelling the transport of nanoparticles under blood flow using an agent-based approach. Sci. Rep. 5, 10649 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, J., Thomas, A. & Liu, Y. Influence of red blood cells on nanoparticle targeted delivery in microcirculation. Soft Matter 8, 1934–1946 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pernet-Gallay, K. et al. Vascular permeability in the RG2 glioma model can be mediated by macropinocytosis and be independent of the opening of the tight junction. J. Cereb. Blood Flow Metab. 37, 1264–1275 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eelen, G., Zeeuw, P. de, Simons, M. & Carmeliet, P. Endothelial cell metabolism in normal and diseased vasculature. Circ. Res. 116, 1231–1244 (2015).

  • Ngo, W. et al. Why nanoparticles prefer liver macrophage cell uptake in vivo. Adv. Drug Deliv. Rev. 185, 114238 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tsoi, K. M. et al. Mechanism of hard nanomaterial clearance by the liver. Nat. Mater. 15, 1212–1221 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liebner, S. et al. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 100, 323–331 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xiang, S. et al. Uptake mechanisms of non-viral gene delivery. J. Control. Release 158, 371–378 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dai, Q. et al. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 12, 8423–8435 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin, Z. P. et al. Macrophages actively transport nanoparticles in tumors after extravasation. ACS Nano 16, 6080–6092 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–92 (1986).

    PubMed 
    CAS 

    Google Scholar
     

  • Bae, E. et al. Integrin α3β1 promotes vessel formation of glioblastoma-associated endothelial cells through calcium-mediated macropinocytosis and lysosomal exocytosis. Nat. Commun. 13, 4268 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, Y., Wu, J. L. Y., Lazarovits, J. & Chan, W. C. W. An analysis of the binding function and structural organization of the protein corona. J. Am. Chem. Soc. 142, 8827–8836 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, Z. P., Ngo, W., Mladjenovic, S. M., Wu, J. L. Y. & Chan, W. C. W. Nanoparticles bind to endothelial cells in injured blood vessels via a transient protein corona. Nano Lett. 23, 1003–1009 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ngo, W. et al. Identifying cell receptors for the nanoparticle protein corona using genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chauhan, V. P. et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7, 383–388 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments