quinta-feira, abril 24, 2025
HomeNanotechnologyTargeted drug delivery systems for atherosclerosis | Journal of Nanobiotechnology

Targeted drug delivery systems for atherosclerosis | Journal of Nanobiotechnology


  • Takaoka M, Zhao X, Lim HY, Magnussen CG, Ang O, Suffee N et al. Early intermittent hyperlipidaemia alters tissue macrophages to fuel atherosclerosis. Nature. 2024;634(8033):1–3.

  • Björkegren JLM, Lusis AJ. Atherosclerosis: recent developments. Cell. 2022;185(10):1630–45.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng J, Qin S, Gui L, et al. Light-up lipid droplets for the visualization of lipophagy and atherosclerosis by coumarin-derived bioprobe. Chin Chem Lett. 2021;32(8):2385–9.

    Article 
    CAS 

    Google Scholar
     

  • Zanganeh S, Doroudian M, Nowzari ZR, et al. Viral Nanoparticles-Mediated delivery of therapeutic cargo. Adv Ther. 2023;6(10):2300082.

    Article 
    CAS 

    Google Scholar
     

  • Lei W, Shen F, Chang N, et al. Chemical proteomics reveals ligustilide targets SMAD3, inhibiting collagen synthesis in aortic endothelial cells. Chin Chem Lett. 2021;32(1):190–3.

    Article 
    CAS 

    Google Scholar
     

  • Kawai K, Finn AV, Virmani R. Subclinical atherosclerosis: part 1: what is it? Can it be defined at the histological level? Arteriosclerosis, Thrombosis, and Vascular Biology. 2024;44(1):12–23.

  • Okamura T, Tsukamoto K, Arai H, et al. Japan atherosclerosis society (JAS) guidelines for prevention of atherosclerotic cardiovascular diseases 2022. J Atheroscler Thromb. 2024;31(6):641–853.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang Q, Tian F, Xu J, Du X, Zhang S, Liu L. New insight into dyslipidemia-induced cellular senescence in atherosclerosis. Biol Rev Camb Philos Soc. 2022;97(5):1844–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song Y, Huang Y, Zhou F, et al. Macrophage-targeted nanomedicine for chronic diseases immunotherapy. Chin Chem Lett. 2022;33(2):597–612.

    Article 
    CAS 

    Google Scholar
     

  • Cao J, Liu S, Xie H, Zhang Y, Zeng Y. The relationship between the visceral adiposity index and carotid atherosclerosis in different genders and age groups. Saudi Med J. 2022;43(2):169–76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bu LL, Yuan HH, Xie LL, Li X, Zhang Y, Chen J, et al. New dawn for atherosclerosis: vascular endothelial cell senescence and death. Int J Mol Sci. 2023;24(20):15160.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, et al. Pathophysiology Atherosclerosis Int J Mol Sci. 2022;23(6):3346.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gusev E, Sarapultsev A. Atherosclerosis and inflammation: insights from the theory of general pathological processes. Int J Mol Sci. 2023;24(9):7910.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang C, Chen G, Wu F, Cao Y, Yang F, You T, et al. Endothelial CCRL2 induced by disturbed flow promotes atherosclerosis via chemerin-dependent Β2 integrin activation in monocytes. Cardiovasc Res. 2023;119(9):1811–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song Y, Jing H, Vong LB, et al. Recent advances in targeted stimuli-responsive nano-based drug delivery systems combating atherosclerosis. Chin Chem Lett. 2022;33(4):1705–17.

    Article 
    CAS 

    Google Scholar
     

  • Attiq A, Afzal S, Ahmad W, et al. Hegemony of inflammation in atherosclerosis and coronary artery disease. Eur J Pharmacol. 2024;966:176338.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Díez-Díez M, Ramos-Neble BL, de la Barrera J, et al. Unidirectional association of clonal hematopoiesis with atherosclerosis development. Nat Med. 2024;30(10):2857–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poznyak AV, Sadykhov NK, Kartuesov AG, Borisov EE, Melnichenko AA, Grechko AV, et al. Hypertension as a risk factor for atherosclerosis: cardiovascular risk assessment. Front Cardiovasc Med. 2022;9:959285.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng X, Wang J, Yu S et al. Advances in the treatment of atherosclerosis with ligand-modified nanocarriers. Exploration. 2024;4(3):20230090.

  • Khan A, Roy P, Ley K. Breaking tolerance: the autoimmune aspect of atherosclerosis. Nat Rev Immunol. 2024;24(9):670–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adkar SS, Leeper NJ. Efferocytosis in atherosclerosis. Nat Reviews Cardiol. 2024;21(11):762–79.

    Article 

    Google Scholar
     

  • Tyrrell DJ, Goldstein DR. Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6. Nat Rev Cardiol. 2021;18(1):58–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Man JJ, Beckman JA, Jaffe IZ. Sex as a biological variable in atherosclerosis. Circ Res. 2020;126(9):1297–09.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stroope C, Nettersheim FS, Coon B, et al. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metabolism. 2024;6(4):617–38.

    Article 

    Google Scholar
     

  • Xu X, Xu X, Ma M, et al. The mechanisms of ferroptosis and its role in atherosclerosis. Biomed Pharmacother. 2024;171:116112.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lavillegrand JR, Al-Rifai R, Thietart S, et al. Alternating high-fat diet enhances atherosclerosis by neutrophil reprogramming. Nature. 2024;634(8033):447–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Meyer GRY, Zurek M, Puylaert P, et al. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets. Nat Reviews Cardiol. 2024;21(5):312–25.

    Article 

    Google Scholar
     

  • Cao Y, Liu Y, Zhang T, Luo X, Li J, Zhu H, et al. Comparative analysis on single- and multiherb strategies in coronary artery atherosclerosis therapy. Cardiol Res Pract. 2021;2021(1):6621925.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiarito M, Sanz-Sánchez J, Cannata F, Cao D, Godino C, Reimers B, et al. Monotherapy with a P2Y12 inhibitor or aspirin for secondary prevention in patients with established atherosclerosis: a systematic review and meta-analysis. Lancet. 2020;395(10235):1487–95.

    Article 
    PubMed 

    Google Scholar
     

  • Lee Y, Kim BR, Kang GH, Jang MJ, Park SY, Choi YH, et al. The effects of PPAR agonists on atherosclerosis and nonalcoholic fatty liver disease in ApoE–/– FXR–/– mice. Endocrinol Metab. 2021;36(6):1243.

    Article 
    CAS 

    Google Scholar
     

  • Xu M, Wang W, Cheng J, et al. Effects of mitochondrial dysfunction on cellular function: role in atherosclerosis. Biomed Pharmacother. 2024;174:116587.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao Y, Xu Y, Liu X, Chen L, Wang Q, Zhang P, et al. Simultaneous Rosiglitazone release and low-density lipoprotein removal by chondroitin sodium sulfate/cyclodextrin/poly (acrylic acid) composite adsorbents for atherosclerosis therapy. Biomacromolecules. 2024;25(5):3141–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Liu F, Zhu L, Wang Y, Sun Z, Zhang J, et al. Molecular mechanism of Rosiglitazone inhibiting atherosclerosis in ApoE mice by regulating ABCA1 reverse cholesterol transport. Acta Med Mediterr. 2022;38(1):365–70.


    Google Scholar
     

  • Mu D, Li J, Qi Y, Guo X, Zhao L, Ma H, et al. Hyaluronic acid-coated polymeric micelles with hydrogen peroxide scavenging to encapsulate Statins for alleviating atherosclerosis. J Nanobiotechnol. 2020;18:1–12.

    Article 

    Google Scholar
     

  • Gu Y, Dai Q, Ma C, Wang Z, Wang Z, Yuan H, et al. Hair follicle-targeting drug delivery strategies for the management of hair follicle-associated disorders. Asian J Pharm Sci. 2022;17(3):221–33.


    Google Scholar
     

  • Waksman R, Merdler I, Case BC, et al. Targeting inflammation in atherosclerosis: overview, strategy and directions. EuroIntervention. 2024;20(1):32–44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Zhang H, Chen Y, Liu X, Wang Z, Zhao P, et al. Fucoidan-based dual-targeting mesoporous polydopamine for enhanced MRI-guided chemo-photothermal therapy of HCC via P-selectin-mediated drug delivery. Asian J Pharm Sci. 2022;17(3):327–39.

    CAS 

    Google Scholar
     

  • Zhang X, Li Y, Wang Z, Liu J, Chen H, Yang F, et al. Macrophage membrane-mediated targeted drug delivery for treatment of spinal cord injury regardless of the macrophage polarization States. Asian J Pharm Sci. 2022;17(4):457–65.

    CAS 

    Google Scholar
     

  • Wang J, Liu Y, Zhao W, Chen X, Yang F, Wu H, et al. Biointerface engineering nanoplatforms for cancer-targeted drug delivery. Asian J Pharm Sci. 2023;18(2):123–32.

    CAS 

    Google Scholar
     

  • Zhang T, Li Y, Wang X, Chen L, Yang Z, Qian Q, et al. Amino acid transporters: emerging roles in drug delivery for tumor-targeting therapy. Asian J Pharm Sci. 2023;18(5):456–68.


    Google Scholar
     

  • Soehnlein O, Libby P. Targeting inflammation in atherosclerosis—from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20(8):589–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu X, Majumder J, Taratula O, Wang Z, Zhuang Y, Tong J et al. Nanotechnology-based strategy for enhancing therapeutic efficacy in pancreatic cancer: receptor-targeted drug delivery by somatostatin analog. Int J Mol Sci 2024;25(10).

  • Langerbeins P, Giza A, Robrecht S, Cramer P, Al-Sawaf O, Fink AM et al. Infections in patients with chronic lymphocytic leukemia treated with time-limited targeted drug combinations. Am J Hematol. 2024;TBD.

  • Bhat A, Malik A, Yadav P, Singh P, Verma V, Sharma R et al. Mesenchymal stem cell-derived extracellular vesicles: recent therapeutics and targeted drug delivery advances. J Extracell Biol 2024;3(5).

  • Rajendran SM, Rajagopal P, Jayaraman S, Kumar G, Mohan V, Arumugam P, et al. Targeted therapy: role of liposome-based drug delivery in advancing oral cancer treatment. Oral Oncol Rep. 2024;10:100445.

    Article 

    Google Scholar
     

  • Chu R, Wang Y, Kong J, Zhao T, Ma Y, Zhang W et al. Lipid nanoparticles as the drug carrier for targeted therapy of hepatic disorders. J Mater Chem B. 2024;TBD.

  • Xia X, Li X, Xie F, Gao Z, Zhou Y, Wang S et al. Non-targeted metabonomic analysis of plasma in patients with atherosclerosis by liquid chromatography-mass spectrometry. Ann Transl Med 2022;10(3).

  • Li C, Liu R, Xiong Z, Bao X, Liang S, Zeng H, et al. Ferroptosis: a potential target for the treatment of atherosclerosis. Acta Biochim Biophys Sin (Shanghai). 2024;56(3):331–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Amadori L, Calcagno C, Fernandez DM, Koplev S, Fernandez N, Kaur R, et al. Erratum: publisher correction: systems immunology-based drug repurposing framework to target inflammation in atherosclerosis. Nat Cardiovasc Res. 2023;2(8):793.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poznyak AV, Sukhorukov VN, Popov MA, Chegodaev YS, Postnov AY, Orekhov AN. Mechanisms of the Wnt pathways as a potential target pathway in atherosclerosis. J Lipid Atheroscler. 2023;12(3):223–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shu Y, Jin S. Caveolin-1 in endothelial cells: a potential therapeutic target for atherosclerosis. Heliyon 2023;9(8).

  • Chen W, Wu X, Hu J, Liu X, Guo Z, Wu J, et al. The translational potential of miR-26 in atherosclerosis and development of agents for its target genes ACC1/2, COL1A1, CPT1A, FBP1, DGAT2, and SMAD7. Cardiovasc Diabetol. 2024;23(1):21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulholland M, Depuydt MAC, Jakobsson G, Ljungcrantz I, Grentzmann A, To F, et al. Interleukin-1 receptor accessory protein Blockade limits the development of atherosclerosis and reduces plaque inflammation. Cardiovasc Res. 2024;120(6):581–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao Z, Li Z, Gu Y, et al. A review of pharmaceutical and clinical studies of the Cholesterol-Lowering drug PCSK9 inhibitor inclisiran. J Med Dev Sci. 2025;10(1):28–33.


    Google Scholar
     

  • Li WW, Guo ZM, Wang BC, et al. PCSK9 induces endothelial cell autophagy by regulating the PI3K/ATK pathway in atherosclerotic coronary heart disease. Clin Hemorheol Microcirc. 2025;89(1):55–67.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang X, Song J, Zhang X, et al. Understanding drug interactions in antiplatelet therapy for atherosclerotic vascular disease: A systematic review. CNS Neurosci Ther. 2025;31(2):e70258.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eslami M, Monemi M, Nazari MA, et al. The Anti-inflammatory potential of tricyclic antidepressants (TCAs): A novel therapeutic approach to atherosclerosis pathophysiology. Pharmaceuticals. 2025;18(2):197.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ardekani FM, Zibaeenezhad MJ, Sayadi M, et al. Ten-year atherosclerosis cardiovascular disease (ASCVD) risk score and its components among nomadic population in Southern Iran: A population-based study. Clin Epidemiol Global Health. 2025;31:101913.

    Article 

    Google Scholar
     

  • Karrar HR, Nouh MI, Alnami AA, et al. Recent advances and perspectives of atherosclerotic occlusive disease. Ann Afr Med. 2025;24(2):220–4.

  • Gu B, Li M, Li D et al. CRISPR-Cas9 targeting PCSK9: A promising therapeutic approach for atherosclerosis. J Cardiovasc Transl Res, 2025:1–18. https://doi.org/10.1007/s12265-024-10587-7.

  • Hettwer J, Hinterdobler J, Miritsch B, et al. Interleukin-1β suppression dampens inflammatory leucocyte production and uptake in atherosclerosis. Cardiovascular Res. 2022;118(13):2778–91.

    Article 
    CAS 

    Google Scholar
     

  • Mehta S. Theranostic-Nanoparticles Used for the Treatment of Atherosclerosis[M]//Nanoparticles in the Management of Atherosclerosis: A Machine-Generated Literature Overview. Cham: Springer Nature Switzerland, 2025:369–417.

  • He G, Ni Y, Hua R, et al. Latexin deficiency limits foam cell formation and ameliorates atherosclerosis by promoting macrophage phenotype differentiation. Cell Death Dis. 2024;15(10):754.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicholls SJ, Nelson AJ. New targets and mechanisms of action for lipid-lowering and anti-inflammatory therapies in atherosclerosis: where does the field stand? Expert Opin Ther Targets. 2024;28(5):375–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Guo X, Zhang X. Modulation of atherosclerosis-related signaling pathways by Chinese herbal extracts: recent evidence and perspectives. Phytother Res. 2024;38(6):2892–930.

    Article 
    PubMed 

    Google Scholar
     

  • Deng Y, Liu L, Li Y et al. pH-sensitive nano-drug delivery systems dual-target endothelial cells and macrophages for enhanced treatment of atherosclerosis. Drug Delivery Translational Res, 2025:1–17. https://doi.org/10.1007/s13346-025-01791-2.

  • Sopić M, Vladimirov S, Munjas J, et al. Targeting noncoding RNAs to treat atherosclerosis. Br J Pharmacol. 2025;182(2):220–45.

    Article 
    PubMed 

    Google Scholar
     

  • Liu B, Su L, Loo SJ, Gao Y, Khin E, Kong X, et al. Matrix metallopeptidase 9 contributes to the beginning of plaque and is a potential biomarker for the early identification of atherosclerosis in asymptomatic patients with diabetes. Front Endocrinol (Lausanne). 2024;15:1369369.

    Article 
    PubMed 

    Google Scholar
     

  • Jia Y, Zou L, Xue M, Zhang X, Xiao X. Evaluation of peri-plaque pericoronary adipose tissue Attenuation in coronary atherosclerosis using a dual-layer spectral detector CT. Front Med (Lausanne). 2024;11:1357981.

    Article 
    PubMed 

    Google Scholar
     

  • Abela GS, Katkoori VR, Pathak DR, Bumpers HL, Leja M, Abideen ZU, et al. Cholesterol crystals induce mechanical trauma, inflammation, and neo-vascularization in solid cancers as in atherosclerosis. Am Heart J Plus. 2023;35:100317.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li M, Wang ZW, Fang LJ, Chen R, Huang Y, Zhang M, et al. Programmed cell death in atherosclerosis and vascular calcification. Cell Death Dis. 2022;13(5):467.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu K, Yan F, Qin X, Wei L, Wang X, Chen Y, et al. Mitochondrial dysfunction in vascular endothelial cells and its role in atherosclerosis. Front Physiol. 2022;13:1084604.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madaudo C, Coppola G, Parlati ALM, et al. Discovering inflammation in atherosclerosis: insights from pathogenic pathways to clinical practice. Int J Mol Sci. 2024;25(11):6016.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu J, Chen C, Yang Y. Identification and validation of candidate gene module along with immune cells infiltration patterns in atherosclerosis progression to plaque rupture via transcriptome analysis. Front Cardiovasc Med. 2022;9:894879.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, He H, Mao Y, et al. Advances in atherosclerosis theranostics Harnessing iron oxide-based nanoparticles. Adv Sci. 2024;11(17):2308298.

    Article 
    CAS 

    Google Scholar
     

  • Singh D, Rai V, Agrawal DK. Non-coding RNAs in regulating plaque progression and remodeling of extracellular matrix in atherosclerosis. Int J Mol Sci. 2022;23(22):13731.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Jia X, Wang Y et al. Caveolin-1-Mediated LDL Transcytosis across Endothelial Cells in Atherosclerosis. Atherosclerosis. 2025:119113.

  • Gianopoulos I, Daskalopoulou SS. Macrophage profiling in atherosclerosis: Understanding the unstable plaque. Basic Res Cardiol. 2024;119(1):35–56.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang H, Ge S, Ni B, Yan C, Chen Y, Wang X, et al. Augmenting ATG14 alleviates atherosclerosis and inhibits inflammation via promotion of autophagosome-lysosome fusion in macrophages. Autophagy. 2021;17(12):4218–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasheminasabgorji E, Jha J. Dyslipidemia, diabetes and atherosclerosis: role of inflammation and ROS-redox-sensitive factors. Biomedicines. 2021;9(11):1602.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samal SK, Fröbert O, Kindberg J, Vesterberg O, Overgaard MT, Blomqvist C, et al. Potential natural immunization against atherosclerosis in hibernating bears. Sci Rep. 2021;11(1):12120.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nielsen RV, Fuster V, Bundgaard H, et al. Personalized intervention based on early detection of atherosclerosis: JACC state-of-the-art review. J Am Coll Cardiol. 2024;83(21):2112–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong Z, Hou L, Luo W, et al. Myocardial infarction drives trained immunity of monocytes, accelerating atherosclerosis. Eur Heart J. 2024;45(9):669–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Orecchioni M, Kobiyama K, Winkels H, Ghosh A, Oakley G, Rappaport J, et al. Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production. Science. 2022;375(6577):214–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He Z, Chen W, Hu K, et al. Resolvin D1 delivery to lesional macrophages using antioxidative black phosphorus nanosheets for atherosclerosis treatment. Nat Nanotechnol. 2024;19(9):1386–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gáll T, Nagy P, Garai D, Demjén D, Csanády M, Szabó AJ, et al. Overview on hydrogen sulfide-mediated suppression of vascular calcification and hemoglobin/heme-mediated vascular damage in atherosclerosis. Redox Biol. 2022;57:102504.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pickett JR, Wu Y, Zacchi LF, Michela P, Secchiero P, Mandrioli J, et al. Targeting endothelial vascular cell adhesion molecule-1 in atherosclerosis: drug discovery and development of vascular cell adhesion molecule-1–directed novel therapeutics. Cardiovasc Res. 2023;119(13):2278–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amponsah-Offeh M, Ciliberti G, Polycarpou-Schwarz M, Dietrich F, Müller M, Santag S, et al. Role of ADAR2-mediated innate immune responses in vascular inflammation and atherosclerosis. Cardiovasc Res. 2024;120(Suppl 1):169.


    Google Scholar
     

  • Wei X, Lin H, Zhang B, Huang X, Jiang Y, Luo F, et al. Phoenixin-20 prevents ox-LDL-induced attachment of monocytes to human aortic endothelial cells (HAECs): A protective implication in atherosclerosis. ACS Chem Neurosci. 2021;12(6):990–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soltani S, Boozari M, Cicero AFG, Sahebkar A. Effects of phytochemicals on macrophage cholesterol efflux capacity: impact on atherosclerosis. Phytother Res. 2021;35(6):2854–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hettwer J, Hinterdobler J, Miritsch B, Schott H, Feger D, Wolfram L, et al. Interleukin-1β suppression dampens inflammatory leucocyte production and uptake in atherosclerosis. Cardiovasc Res. 2022;118(13):2778–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Natarajan N, Florentin J, Johny E, et al. Aberrant mitochondrial DNA synthesis in macrophages exacerbates inflammation and atherosclerosis. Nat Commun. 2024;15(1):7337.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai JH, Hung LF, Huang CY, Wang SH, Tsai YF, Lin CL, et al. Mitochondrial protein CMPK2 regulates IFN alpha-enhanced foam cell formation, potentially contributing to premature atherosclerosis in SLE. Arthritis Res Ther. 2021;23:1–12.

    Article 

    Google Scholar
     

  • Zhang T, Pang C, Xu M, et al. The role of immune system in atherosclerosis: molecular mechanisms, controversies, and future possibilities. Hum Immunol. 2024;85(2):110765.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kłósek M, Kurek-Górecka A, Balwierz R, Oszmianski J, Górecki M, Sroka Z, et al. The effect of methyl-derivatives of Flavanone on MCP-1, MIP-1β, RANTES, and eotaxin release by activated RAW264.7 macrophages. Molecules. 2024;29(10):2239.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langer HF. Chronic inflammation in atherosclerosis—The CD40L/CD40 axis belongs to dendritic cells and T cells, not platelets. J Thromb Haemost. 2022;20(1):3–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan L, Liu J, Hu W, et al. Targeting pro-inflammatory T cells as a novel therapeutic approach to potentially resolve atherosclerosis in humans. Cell Res. 2024;34(6):407–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi X, Wu H, Liu Y, Wang Y, Zhu Q, Zhang W, et al. Inhibiting vascular smooth muscle cell proliferation mediated by osteopontin via regulating gut microbial lipopolysaccharide: A novel mechanism for Paeonol in atherosclerosis treatment. Front Pharmacol. 2022;13:936677.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang B, Hang S, Xu S, et al. Macrophage polarization and inflammatory mechanisms in atherosclerosis. Implications for Prevention and Treatment. Heliyon; 2024.

  • Zheng M, Li L, Liu Y, Wu T, Zhou X, Zhao J, et al. Silencing ferritin alleviates atherosclerosis in mice via regulating the expression levels of matrix metalloproteinases and interleukins. Acta Biochim Pol. 2021;68(4):705–10.

    CAS 
    PubMed 

    Google Scholar
     

  • van der Vorst EPC, Maas SL, Theodorou K, Koenen RR, Döring Y, Weber C, et al. Endothelial ADAM10 controls cellular response to OxLDL and its deficiency exacerbates atherosclerosis with intraplaque hemorrhage and neovascularization in mice. Front Cardiovasc Med. 2023;10:974918.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang P, Blanchard V, Francis GA. Smooth muscle cell—macrophage interactions leading to foam cell formation in atherosclerosis: location, location, location. Front Physiol. 2022;13:921597.

    Article 

    Google Scholar
     

  • Fang F, Geng Y, Yin S, Lin J, Zhu Z, Zhang Q et al. Tuning macrophages for atherosclerosis treatment. Regen Biomater 2023;10.

  • Li S, He RC, Wu SG, et al. LncRNA PSMB8-AS1 instigates vascular inflammation to aggravate atherosclerosis. Circul Res. 2024;134(1):60–80.

    Article 
    CAS 

    Google Scholar
     

  • Omelchenko A, Kostyuk S, Rudenko A, Makarov V, Ivashchenko Y, Golovach S et al. Association of atherosclerosis-related mitochondrial mutations with the mitochondrial dysfunction. Atherosclerosis 2023;379:S13.

  • Guo J, Ma J, Cai K, Shi S, Zhang H, Xue Y, et al. Isoflavones from semen Sojae preparatum improve atherosclerosis and oxidative stress by modulating Nrf2 signaling pathway through estrogen-like effects. Evid Based Complement Alternat Med. 2022;2022(1):4242099.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Violi F, Pignatelli P, Valeriani E. Oxidative stress and atherosclerosis: basic and clinical open issues. Pol Heart J (Kardiologia Polska). 2024;82(7–8):689–91.

    Article 

    Google Scholar
     

  • Shiina K, Sakurai Y, Hiraoka A, Abe M, Fujimoto Y, Yoshimoto T, et al. Differential effect of a Xanthine oxidase inhibitor on arterial stiffness and carotid atherosclerosis: a subanalysis of the PRIZE study. Hypertens Res. 2022;45(4):602–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Y, Cao H, Chen B, et al. Simultaneous in vivo imaging of neutrophil elastase and oxidative stress in atherosclerotic plaques using a unimolecular photoacoustic probe. Angew Chem. 2024;136(46):e202411840.

    Article 

    Google Scholar
     

  • Becker PH, Le Guillou E, Duque M, Ziegler F, Herbin O, Boileau C, et al. Cholesterol accumulation induced by acetylated LDL exposure modifies the enzymatic activities of the TCA cycle without impairing the respiratory chain functionality in macrophages. Biochimie. 2022;200:87–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang XQ, Chen JW, Lu L, Li Y, Zhang H, Guo H, et al. Increased 12/15-lipoxygenase by disturbed flow promotes endothelial dysfunction and the development of atherosclerosis. Eur Heart J. 2023;44(Suppl 2):3266.


    Google Scholar
     

  • Mathew AV, Zeng L, Atkins KB, Casanova A, Guan L, Lewandowski ED et al. Deletion of bone marrow myeloperoxidase attenuates chronic kidney disease accelerated atherosclerosis. J Biol Chem 2021;296.

  • Queiroz MIC, Lazaro CM, Dos Santos LMB, et al. Vivo chronic exposure to inorganic mercury worsens hypercholesterolemia, oxidative stress and atherosclerosis in the LDL receptor knockout mice. Ecotoxicol Environ Saf. 2024;275:116254.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ansari A, Yada PK, Zhou L, Lee J, Kim H, Park J et al. Regulation of plasma lipoproteins and atherosclerosis by microRNA-541-3p and transcription factors ZNF101 and CASZ1. Arterioscler Thromb Vasc Biol 2023;43(Suppl 1).

  • Cao Y, Song N, Wang Y, et al. The potential association of TFR1/SLC11A2/GPX4 with ferroptosis in mediating lipid metabolism disorders in atherosclerosis. Volume 28. Combinatorial Chemistry & High Throughput Screening; 2025. pp. 467–77. 3.

  • Sajja A, Li HF, Spinelli KJ, Zahra A, Dunne R, Shah PK, et al. Discordance between standard equations for determination of LDL cholesterol in patients with atherosclerosis. J Am Coll Cardiol. 2022;79(6):530–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marchini T, Hansen S, Wolf D. ApoB-specific CD4 + T cells in mouse and human atherosclerosis. Cells. 2021;10(2):446.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartley A, Greene M, Caga-Anan M, Makowski D, Kanwar YS, Tirrell DA, et al. Molecular imaging of experimental atherosclerosis using anti-malondialdehyde-modified low-density lipoprotein humanized antibody fragment targeted nanoparticles. Eur Heart J. 2022;43(Suppl 2):3040.


    Google Scholar
     

  • Demina EP, Smutova V, Pan X, Yamamoto H, Takahashi K, Sialic A et al. Neuraminidases 1 and 3 trigger atherosclerosis by desialylating low-density lipoproteins and increasing their uptake by macrophages. J Am Heart Assoc 2021;10(4).

  • Qiao YN, Zou YL, Guo SD. Low-density lipoprotein particles in atherosclerosis. Front Physiol. 2022;13:931931.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Wu B, Guan K, et al. Identification of lipid metabolism related immune markers in atherosclerosis through machine learning and experimental analysis. Front Immunol. 2025;16:1549150.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Zhang Y, Zhao Y, et al. Research progress and clinical translation potential of coronary atherosclerosis diagnostic markers from a genomic perspective. Genes. 2025;16(1):98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Zhou B, Guo Y, Chen X, Zhu P, Wu Q, et al. SR-A-targeted nanoplatform for sequential photothermal/photodynamic ablation of activated macrophages to alleviate atherosclerosis. ACS Appl Mater Interfaces. 2021;13(25):29349–62.

    Article 
    CAS 

    Google Scholar
     

  • Poznyak AV, Nikiforov NG, Markin AM, Kashirskikh DA, Grechko AV, Orekhov AN, et al. Overview of OxLDL and its impact on cardiovascular health: focus on atherosclerosis. Front Pharmacol. 2021;11:613780.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mushenkova NV, Bezsonov EE, Orekhova VA, Popkova TV, Ivanova EA, Wu WK, et al. Recognition of oxidized lipids by macrophages and its role in atherosclerosis development. Biomedicines. 2021;9(8):915.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao ZH, Wang YR, Li R, Liu XY, Zhang YT, Hu JT et al. Single nucleotide polymorphisms rs102313, rs118231 and rs201832 of CETP TaqIB gene correlated with lipid metabolism abnormalities and cerebral infarction in patients with atherosclerosis. Eur Rev Med Pharmacol Sci 2021;25(23).

  • Chehaitly A, Guihot AL, Proux C, Pouplard L, Villard C, Vandiedonck C, et al. Altered mitochondrial OPA1-related fusion in mouse promotes endothelial cell dysfunction and atherosclerosis. Antioxidants. 2022;11(6):1078.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu X, Pan JJ, Yu JJ, Qiu WJ, Feng YJ, Lu YY, et al. DiDang Decoction improves mitochondrial function and lipid metabolism via the HIF-1 signaling pathway to treat atherosclerosis and hyperlipidemia. J Ethnopharmacol. 2023;308:116289.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • An C, Sun F, Liu C, Yuan Y, Jin Z, Wang H, et al. IQGAP1 promotes mitochondrial damage and activation of the MtDNA sensor cGAS-STING pathway to induce endothelial cell pyroptosis leading to atherosclerosis. Int Immunopharmacol. 2023;123:110795.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poznyak AV, Nikiforov NG, Wu WK, Popkova TV, Orekhova VA, Grechko AV, et al. Autophagy and mitophagy as essential components of atherosclerosis. Cells. 2021;10(2):443.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fedotova EI, Berezhnov AV, Popov DY, et al. The role of MtDNA mutations in atherosclerosis: the influence of mitochondrial dysfunction on macrophage polarization. Int J Mol Sci. 2025;26(3):1019.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campolo J, Canale P, Gazzaniga G, et al. The mitochondrial dysfunction, alongside the modifiable burden of traditional risk factors, drives the development of early-onset coronary artery disease. Front Cardiovasc Med. 2025;12:1538202.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren H, Hu W, Jiang T, et al. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases: novel mechanisms and therapeutic targets. Biomed Pharmacother. 2024;174:116545.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vendrov AE, Lozhkin A, Hayami T, et al. Mitochondrial dysfunction and metabolic reprogramming induce macrophage pro-inflammatory phenotype switch and atherosclerosis progression in aging. Front Immunol. 2024;15:1410832.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng X, Sun B, Tang C et al. HMOX1-LDHB interaction promotes ferroptosis by inducing mitochondrial dysfunction in foamy macrophages during advanced atherosclerosis. Dev Cell, 2024.

  • Khotina VA, Vinokurov AY, Sinyov VV, et al. Mitochondrial dysfunction associated with MtDNA mutation: mitochondrial genome editing in atherosclerosis research. Current Medicinal Chemistry; 2024.

  • Sazonova MA, Sinyov VV, Ryzhkova AI, Galitsyna EV, Khasanova ZD, Zhelankin AV, et al. Some molecular and cellular stress mechanisms associated with neurodegenerative diseases and atherosclerosis. Int J Mol Sci. 2021;22(2):699.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camacho-Encina M, Booth LK, Redgrave RE, et al. Cellular senescence, mitochondrial dysfunction, and their link to cardiovascular disease. Cells. 2024;13(4):353.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noone S, Schubert R, Fichtlscherer S, Rohrer L, Brühl ML, Robenek H, et al. Endothelial dysfunction and atherosclerosis related miRNA-expression in patients with haemophilia. Haemophilia. 2023;29(1):61–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donadini MP, Calcaterra F, Romualdi E, et al. The link between venous and arterial thrombosis: is there a role for endothelial dysfunction?? Cells. 2025;14(2):144.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jimenez-Trinidad FR, Calvo-Gomez S, Sabaté M, et al. Extracellular vesicles as mediators of endothelial dysfunction in cardiovascular diseases. Int J Mol Sci. 2025;26(3):1008.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Wang J, Zhang L, Xu H, Li Y, Sun J, et al. Experimental study on alleviating atherosclerosis through intervention of mitochondrial calcium transport and calcium-induced membrane permeability transition. J Investig Med. 2021;69(6):1156–60.

    Article 
    PubMed 

    Google Scholar
     

  • Fu J, Deng Y, Ma Y, et al. National and provincial-level prevalence and risk factors of carotid atherosclerosis in Chinese adults. JAMA Netw Open. 2024;7(1):e2351225–2351225.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pepin ME, Gupta RM. The role of endothelial cells in atherosclerosis: insights from genetic association studies. Am J Pathol. 2024;194(4):499–509.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Zhang XY, Shi SR, et al. Natural products in atherosclerosis therapy by targeting PPARs: A review focusing on lipid metabolism and inflammation. Front Cardiovasc Med. 2024;11:1372055.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao N, Yu X, Zhu X, et al. Diabetes mellitus to accelerated atherosclerosis: shared cellular and molecular mechanisms in glucose and lipid metabolism. J Cardiovasc Transl Res. 2024;17(1):133–52.

    Article 
    PubMed 

    Google Scholar
     

  • Martos-Rodríguez CJ, Albarrán-Juárez J, Morales-Cano D, Vázquez E, Ortiz E, González-Rodríguez A et al. Fibrous caps in atherosclerosis form by notch-dependent mechanisms common to arterial media development. Arterioscler Thromb Vasc Biol 2021;41(9).

  • Hartmann F, Gorski DJ, Newman AAC, Tse S, Love C, Liao JK, et al. SMC-derived hyaluronan modulates vascular SMC phenotype in murine atherosclerosis. Circ Res. 2021;129(11):992–05.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong W, Ma J, Lin Y, Chen X, Zhao X, Wei Y, et al. Positive association of plasma trimethylamine-N-oxide and atherosclerosis in patients with acute coronary syndrome. Cardiovasc Ther. 2022;2022:2484018.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian J, Chen L, Li Q, Liu J, Huang Y, Li Z, et al. Relationship between serum FGF21 and vWF expression and carotid atherosclerosis in elderly patients with hypertension. J Healthc Eng. 2022;2022:6777771.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma J, Liu X, Qiao L, Zhang R, Wang H, Lin H et al. Association between stent implantation and progression of non-target lesions in a rabbit model of atherosclerosis. Circ Cardiovasc Interv 2021;14(11).

  • Li M, Wang ZW, Fang LJ, Song ZQ, Huang YZ, Zhang BB, et al. Programmed cell death in atherosclerosis and vascular calcification. Cell Death Dis. 2022;13(5):467.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan H, Xue C, Auerbach BJ, Fan J, Bashore AC, Cui J, et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation. 2020;142(21):2060–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang C, Li Z, Liu Y, Jiang Y, Ma Y, Li H, et al. Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Theranostics. 2021;11(8):3996–09.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouyang S, You J, Zhi C, Li P, Lin X, Tan X, et al. Ferroptosis: the potential value target in atherosclerosis. Cell Death Dis. 2021;12(8):782.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Zhao Y, Yao H, Wu Q, Shi W, Li Z, et al. DRP1 knockdown and Atorvastatin alleviate ox-LDL-induced vascular endothelial cells injury: DRP1 is a potential target for preventing atherosclerosis. Exp Cell Res. 2023;429(2):113688.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suh JS, Lee SH, Fouladian Z, Min KH, Shin YC, Kim HS, et al. Rosuvastatin prevents the exacerbation of atherosclerosis in ligature-induced periodontal disease mouse model. Sci Rep. 2020;10(1):6383.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Zhang H, Hu L, Li L, Wei Y, Xie G, et al. Pravastatin attenuates atherosclerosis after myocardial infarction by inhibiting inflammatory Ly6Chigh monocytosis in Apolipoprotein E knockout mice. J Int Med Res. 2020;48(7):0300060520932816.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song K, Tang Z, Song Z, Wang Z, Yin Y, Qin C, et al. Hyaluronic acid-functionalized mesoporous silica nanoparticles loading Simvastatin for targeted therapy of atherosclerosis. Pharmaceutics. 2022;14(6):1265.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang YH, Jiang LY, Wang YC, Luo Y, Zhu Z, He W, et al. Quercetin attenuates atherosclerosis via modulating oxidized LDL-induced endothelial cellular senescence. Front Pharmacol. 2020;11:512.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen F, Chen J, Han C, Zhang R, Wei Z, Yu L, et al. Theranostics of atherosclerosis by the Indole molecule-templated self-assembly of probucol nanoparticles. J Mater Chem B. 2021;9(20):4134–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ali AH, Younis N, Abdallah R, El-Sheikh R, Tawfik AM, Hassan SA, et al. Lipid-lowering therapies for atherosclerosis: Statins, fibrates, Ezetimibe, and PCSK9 monoclonal antibodies. Curr Med Chem. 2021;28(36):7427–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol. 2021;18(12):809–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeo KP, Lim HY, Thiam CH, Chua MWJ, Tan SM, Chan MY et al. Efficient aortic lymphatic drainage is necessary for atherosclerosis regression induced by Ezetimibe. Sci Adv 2020;6(50).

  • Kong N, Xu Q, Cui W, Wang R, Li W, Zhao J et al. PCSK9 inhibitor inclisiran for treating atherosclerosis via regulation of endothelial cell pyroptosis. Ann Transl Med 2022;10(22).

  • Garg PK, Guan W, Nomura S, Qian M, Rana JS, Shea S, et al. Associations of plasma omega-3 and omega-6 PUFA levels with arterial elasticity: the Multi-Ethnic study of atherosclerosis. Eur J Clin Nutr. 2022;76(12):1770–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thompson GR. The scientific basis and future of lipoprotein apheresis. Ther Apher Dial. 2022;26(1):32–6.

    Article 
    PubMed 

    Google Scholar
     

  • Meyer-Lindemann U, Mauersberger C, Schmidt AC, Müller H, Brühl R, Ghanem R, et al. Colchicine impacts leukocyte trafficking in atherosclerosis and reduces vascular inflammation. Front Immunol. 2022;13:898690.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spartalis M, Tzima I, Anastasiou A, Spartalis E, Patsouras N, Dimitroulis D, et al. Anti-inflammatory drug combination therapy for atherosclerosis: Colchicine and Fenofibrate. Curr Med Chem. 2022;29(26):4477–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tchaava K, Gegeshidze N, Shavdia M, Natsvlishvili T, Shekhovtsov M, Kunchulia M et al. Dyslipidemia correction by combination of Statin and choline Fenofibrate in diabetic patients with multifocal atherosclerosis. Metab Clin Exp 2023;142:S5.

  • Ku EJ, Kim BR, Lee JI, Park HS, Lee SH, Cho YJ, et al. The anti-atherosclerosis effect of Anakinra, a Recombinant human interleukin-1 receptor antagonist, in Apolipoprotein E knockout mice. Int J Mol Sci. 2022;23(9):4906.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giles JT, Sattar N, Gabriel S, Ridker PM, Al-Kindi SG, Anderson TJ, et al. Cardiovascular safety of Tocilizumab versus etanercept in rheumatoid arthritis: a randomized controlled trial. Arthritis Rheumatol. 2020;72(1):31–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Svensson EC, Madar A, Campbell CD, van den Berg PR, Wadsworth MHII, Mitton B, et al. TET2-driven clonal hematopoiesis and response to Canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 2022;7(5):521–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palanivelu P, Jagadesan V, Vijayaraghavan R, Rajkumar D, Krishnamoorthy M, Rajakumar S, et al. Terminalia Arjuna bark extract reduces high-fat diet induced cardiac damage in Wistar rats by altering biochemical and histological parameters. Indian J Pharm Educ Res. 2023;57(1):83–93.

    Article 
    CAS 

    Google Scholar
     

  • Susla O, Shved M, Litovkina Z, Fedorova L, Gromova A, Kozlov O et al. Impact of magnesium aspartate and L-carnitine on inflammation, insulin resistance, and atherosclerosis progression in diabetic Hemodialysis patients. Nephrol Dial Transpl 2023;38.

  • Avagimyan A, Fogaci F, Pogosova N, Gotsman I, Shapiro D, Babayeva A et al. Methotrexate & rheumatoid arthritis associated atherosclerosis: a narrative review of multidisciplinary approach for risk modification by the international board of experts. Curr Probl Cardiol. 2023;49(2):102230.

  • Singh L, Sharma S, Xu S, Sahu M, El-Aasar Z, Kumar P, et al. Curcumin as a natural remedy for atherosclerosis: a Pharmacological review. Molecules. 2021;26(13):4036.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo X, Fu H, Xu C, Zhang Y, Li M, Wang Y, et al. Efficient treatment of atherosclerosis by dexamethasone acetate and Rapamycin co-loaded mPEG-DSPE calcium phosphate nanoparticles. J Biomed Nanotechnol. 2020;16(6):810–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baziar N, Nasli-Esfahani E, Djafarian K, Shab-Bidar S, Mirmiran P, Azadbakht L, et al. The beneficial effects of alpha lipoic acid supplementation on Lp-PLA2 mass and its distribution between HDL and apoB-containing lipoproteins in type 2 diabetic patients: a randomized, double-blind, placebo-controlled trial. Oxid Med Cell Longev. 2020;2020:5850865.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Wang Y, Tan W, Wang S, Liu J, Liu X, et al. A review of Danshen combined with clopidogrel in the treatment of coronary heart disease. Evid Based Complement Alternat Med. 2019;2019:2721413.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenson RS, Burgess LJ, Ebenbichler CF, Lutz M, Chhajed P, Gaudet D, et al. Evinacumab in patients with refractory hypercholesterolemia. N Engl J Med. 2020;383(24):2307–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rantasalo V, Laukka D, Nikulainen V, Mattila S, Pienimäki T, Virkki J, et al. Aortic calcification index predicts mortality and cardiovascular events in operatively treated patients with peripheral artery disease: a prospective PURE ASO cohort follow-up study. J Vasc Surg. 2022;76(6):1657–66.

    Article 
    PubMed 

    Google Scholar
     

  • Brugaletta S, Garcia-Garcia HM, Onuma Y, Otsuka F, van Geuns RJ, Serruys PW. Everolimus-eluting ABSORB bioresorbable vascular scaffold: present and future perspectives. Expert Rev Med Devices. 2012;9(4):327–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Zeng Y, Zhu X, Li H, Wang H, Zhou L, et al. Significant difference between sirolimus and Paclitaxel nanoparticles in anti-proliferation effect in normoxia and hypoxia: the basis of better selection of atherosclerosis treatment. Bioact Mater. 2021;6(3):880–89.

    CAS 
    PubMed 

    Google Scholar
     

  • Guo Y, Qin J, Zhao Q, Zhang W, Li L, Zhu Y, et al. Plaque-targeted Rapamycin spherical nucleic acids for synergistic atherosclerosis treatment. Adv Sci (Weinh). 2022;9(16):2105875.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chowdhury MM, Singh K, Albaghdadi MS, Saleh Y, Patel R, Sasaki K, et al. Paclitaxel drug-coated balloon angioplasty suppresses progression and inflammation of experimental atherosclerosis in rabbits. J Am Coll Cardiol Basic Transl Sci. 2020;5(7):685–95.


    Google Scholar
     

  • Patti G, Cavallari I, Cesaro A, Bolognese L, Pirozzolo G, Maiolino G, et al. Use of bempedoic acid for LDL cholesterol Lowering and cardiovascular risk reduction: a consensus document from the Italian study group on atherosclerosis, thrombosis and vascular biology. Vasc Pharmacol. 2023;148:107137.

    Article 
    CAS 

    Google Scholar
     

  • Xuan H, Li Z, Wang J, Du X, Zhang X, Zhao J, et al. Propolis reduces phosphatidylcholine-specific phospholipase C activity and increases Annexin a7 level in oxidized-LDL-stimulated human umbilical vein endothelial cells. Evid Based Complement Alternat Med. 2014;2014:465383.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rocha NA, East C, Zhang J, Lee CH, Kwan G, Loong C, et al. ApoCIII as a cardiovascular risk factor and modulation by the novel lipid-lowering agent volanesorsen. Curr Atheroscler Rep. 2017;19:1–9.

    Article 
    CAS 

    Google Scholar
     

  • Ridker PM, From. RESCUE to ZEUS: will interleukin-6 inhibition with ziltivekimab prove effective for cardiovascular event reduction? 2021.

  • Vong CT, Chen Y, Chen Z, Chen M, Li S, Li Y, et al. Classical prescription Dachuanxiong formula delays nitroglycerin-induced pain response in migraine mice through reducing endothelin-1 level and regulating fatty acid biosynthesis. J Ethnopharmacol. 2022;288:114992.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Li Y, Yuan X, Zhao W, Gao Y, Zhu Y, et al. The effective constituent puerarin, from pueraria Lobata, inhibits the proliferation and inflammation of vascular smooth muscle in atherosclerosis through the miR-29b-3p/IGF1 pathway. Pharm Biol. 2023;61(1):1–11.

    Article 
    PubMed 

    Google Scholar
     

  • Huo X, Raynald, Wang A, Chen S, Wang Y, Wang S, et al. Safety and efficacy of Tirofiban for acute ischemic stroke patients with large artery atherosclerosis stroke etiology undergoing endovascular therapy. Front Neurol. 2021;12:630301.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiarito M, Sanz-Sánchez J, Cannata F, Bouzón C, Pineda AM, Cao D, et al. Monotherapy with a P2Y12 inhibitor or aspirin for secondary prevention in patients with established atherosclerosis: a systematic review and meta-analysis. Lancet. 2020;395(10235):1487–95.

    Article 
    PubMed 

    Google Scholar
     

  • Cainzos-Achirica M, Miedema MD, McEvoy JW, Duprez DA, Greenland P, Cushman M, et al. Coronary artery calcium for personalized allocation of aspirin in primary prevention of cardiovascular disease in 2019: the MESA study (Multi-Ethnic study of Atherosclerosis). Circulation. 2020;141(19):1541–53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han YM, Lee YJ, Jang YN, Choi H, Kim HY, Jeong SH, et al. Aspirin improves nonalcoholic fatty liver disease and atherosclerosis through regulation of the PPARδ-AMPK-PGC-1α pathway in dyslipidemic conditions. Biomed Res Int. 2020;2020:7806860.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Shi Q, Hu Y, Wang Y, Zhang Q, Song W, et al. Silibinin augments the effect of clopidogrel on atherosclerosis in diabetic ApoE deficiency mice. Clin Hemorheol Microcirc. 2022;80(4):353–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amarenco P, Denison H, Evans SR, Himmelmann A, Cortese F, Kennedy KF, et al. Ticagrelor added to aspirin in acute nonsevere ischemic stroke or transient ischemic attack of atherosclerotic origin. Stroke. 2020;51(12):3504–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitazono T, Toyoda K, Kitagawa K, Inoue T, Nagayama M, Koga M, et al. Efficacy and safety of Prasugrel by stroke subtype: a sub-analysis of the PRASTRO-I randomized controlled trial. J Atheroscler Thromb. 2021;28(2):169–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malladi N, Alam MJ, Maulik SK, Saha S, Giri SK, Bandyopadhyay D, et al. The role of platelets in non-alcoholic fatty liver disease: from pathophysiology to therapeutics. Prostaglandins Other Lipid Mediat. 2023;169:106766.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan H, Huang T, Yang P, Wang Y, Liu Z, Zhang Q, et al. Efficacy and safety of cilostazol for atherosclerosis: A Meta-analysis of randomized controlled trials. J Cardiovasc Pharmacol. 2022;79(3):390.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue Q, He N, Wang Z, Zhang T, Wang Y, Gao L, et al. Functional roles and mechanisms of ginsenosides from Panax ginseng in atherosclerosis. J Ginseng Res. 2021;45(1):22–31.

    Article 
    PubMed 

    Google Scholar
     

  • Chen W, Guo S, Li X, Huang L, Wang Z, Liu W, et al. The regulated profile of noncoding RNAs associated with inflammation by Tanshinone IIA on atherosclerosis. J Leukoc Biol. 2020;108(1):243–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu L, Gao R, Song X, Zhao D, Zhou Q, Liang H, et al. Cardio-protective and Anti-atherosclerosis effect of Crocetin on vitamin D3 and HFD-induced atherosclerosis in rats. J Oleo Sci. 2021;70(10):1447–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Bai Y, Bai Y, Liu H, Chen L, Song H, et al. Pharmacokinetics of caffeic acid, ferulic acid, Formononetin, Cryptotanshinone, and Tanshinone IIA after oral administration of Naoxintong capsule in rat by HPLC-MS/MS. Evid Based Complement Alternat Med. 2017;2017:9057238.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sedacca CD, Campbell TW, Bright JM, Camus A, Stoskopf MK, Clancy MM, et al. Chronic Cor pulmonale secondary to pulmonary atherosclerosis in an African grey Parrot. J Am Vet Med Assoc. 2009;234(8):1055–59.

    Article 
    PubMed 

    Google Scholar
     

  • Sarfo FS, Voeks J, Adamu S, Akpalu A, Obese V, Ohene-Frempong K et al. A cardiovascular polypill for secondary stroke prevention in a tertiary centre in Ghana (SMAART): a phase 2 randomized clinical trial. Lancet Glob Health 2023;11(10).

  • Pàmies A, Llop D, Ibarretxe D, Posadas M, Soler MJ, Sánchez-Martínez M, et al. Angiopoietin-2, vascular endothelial growth factor family, and heparin binding endothelial growth factor are associated with subclinical atherosclerosis in rheumatoid arthritis. Comput Struct Biotechnol J. 2024;23:1680–88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim JS, Koo J, Shin DI, Jeon SB, Kim BJ, Yoon YH, et al. Apixaban for secondary stroke prevention: coexistent cerebral atherosclerosis May increase recurrent strokes. J Stroke. 2022;24(1):118.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moran CS, Seto SW, Krishna SM, Tan JT, Moxon JV, Rowbotham SE, et al. Parenteral administration of factor Xa/IIa inhibitors limits experimental aortic aneurysm and atherosclerosis. Sci Rep. 2017;7(1):43079.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanda T, Yoshimura M, Hyodo K, Nomura M, Mori S, Hayashi M, et al. Effects of long-term thrombin Inhibition (dabigatran etexilate) on spontaneous thrombolytic activity during the progression of atherosclerosis in ApoE–/––LDLR–/– double-knockout mice. Korean Circ J. 2020;50(9):804.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo Z, Jiang Y, Liu Z, et al. Selenopeptide nanomedicine ameliorates atherosclerosis by reducing monocyte adhesions and inflammations. Nano Res. 2024;17(7):6332–41.

    Article 
    CAS 

    Google Scholar
     

  • Li D, Chen J, Lu Y, et al. Codelivery of dual gases with Metal-Organic supramolecular Cage‐Based Microenvironment‐Responsive nanomedicine for atherosclerosis therapy. Small. 2024;20(40):2402673.

    Article 
    CAS 

    Google Scholar
     

  • Tang C, Wang H, Guo L, et al. Multifunctional nanomedicine for targeted atherosclerosis therapy: activating plaque clearance cascade and suppressing inflammation. ACS nano; 2025.

  • Chen S, Zhang W, Tang C, et al. Macrophage membrane-functionalized manganese dioxide nanomedicine for synergistic treatment of atherosclerosis by mitigating inflammatory storms and promoting cholesterol efflux. J Nanobiotechnol. 2024;22(1):664.

    Article 
    CAS 

    Google Scholar
     

  • Wan X, Zhang H, Tian J et al. The chains of ferroptosis interact in the whole progression of atherosclerosis. J Inflamm Res 2023;16:4575–92.

  • Peng Y, Feng W, Huang H, et al. Macrophage-targeting antisenescence nanomedicine enables in-Situ NO induction for gaseous and antioxidative atherosclerosis intervention. Bioactive Mater. 2025;48:294–312.

    Article 
    CAS 

    Google Scholar
     

  • Wong YS, Czarny B, Venkatraman SS. Precision nanomedicine in atherosclerosis therapy: how Far are we from reality? Prec Nanomed. 2019;2:230–44.

    Article 

    Google Scholar
     

  • Hejabi F, Abbaszadeh MS, Taji S, et al. Nanocarriers: A novel strategy for the delivery of CRISPR/Cas systems. Front Chem. 2022;10:957572.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin M, Chen X, Zheng L et al. Astaxanthin-loaded polylactic acid-glycolic acid nanoparticles alleviates atherosclerosis by suppressing macrophage ferroptosis via the NRF2/SLC7A11/GPX4 pathway. Arch Biochem Biophys. 2025;765:110316.

  • Zhu L, Zhong Y, Yan M, et al. Macrophage Membrane-Encapsulated Dopamine-Modified Poly cyclodextrin multifunctional biomimetic nanoparticles for atherosclerosis therapy. ACS Appl Mater Interfaces. 2024;16(25):32027–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang T, Wang Y, Zhang Y, et al. Drug-Loaded mesoporous polydopamine nanoparticles in Chitosan hydrogels enable myocardial infarction repair through ROS scavenging and Inhibition of apoptosis. ACS Appl Mater Interfaces. 2024;16(45):61551–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chuang ST. Tailored designs and applications of soft nanomaterials for advancing chimeric antigen receptor macrophage engineering[D]. Rutgers University-School of Graduate Studies; 2024.

  • Wang J, Lu B, Yin G, et al. Design and fabrication of environmentally responsive nanoparticles for the diagnosis and treatment of atherosclerosis. ACS Biomaterials Sci Eng. 2024;10(3):1190–206.

    Article 
    CAS 

    Google Scholar
     

  • Aili T, Zong J, Zhou Y, et al. Recent advances of self-assembled nanoparticles in the diagnosis and treatment of atherosclerosis. Theranostics. 2024;14(19):7505.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Gu J, Xiao Q, et al. Liposomal codelivery of inflammation inhibitor and collagen protector to the plaque for effective anti-atherosclerosis. Chin Chem Lett. 2023;34(01):107483.

    Article 
    CAS 

    Google Scholar
     

  • Zhen J, Li X, Yu H, et al. High-density lipoprotein mimetic nano-therapeutics targeting monocytes and macrophages for improved cardiovascular care: a comprehensive review. J Nanobiotechnol. 2024;22(1):263.

    Article 

    Google Scholar
     

  • Mallén A, Narváez-Narváez DA, Pujol MD, et al. Development of cationic solid lipid nanoparticles incorporating cholesteryl-9-carboxynonanoate (9CCN) for delivery of antagomirs to macrophages. Eur J Pharm Biopharm. 2024;197:114238.

    Article 
    PubMed 

    Google Scholar
     

  • Sun X, Jia X, Tan Z, et al. Oral nanoformulations in cardiovascular medicine: advances in atherosclerosis treatment. Pharmaceuticals. 2024;17(7):919.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Jiang Z, Yang X, et al. Engineering nanoplatforms for theranostics of atherosclerotic plaques. Adv Healthc Mater. 2024;13(16):2303612.

    Article 
    CAS 

    Google Scholar
     

  • Tong J, Wang Z, Zhang J, et al. Advanced applications of nanomaterials in atherosclerosis diagnosis and treatment: challenges and future prospects. ACS Appl Mater Interfaces. 2024;16(43):58072–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng W, Zhou Y, Wan Q, et al. Nano-enzyme hydrogels for cartilage repair effectiveness based on ternary strategy therapy. J Mater Chem B. 2024;12(25):6242–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin H, Lu W, Zhang Y, et al. Functionalized periodic mesoporous silica nanoparticles for inhibiting the progression of atherosclerosis by targeting low-density lipoprotein cholesterol. Pharmaceutics. 2024;16(1):74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin Y, Xie R, Yu T. Photodynamic therapy for atherosclerosis: past, present, and future. Pharmaceutics. 2024;16(6):729.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fontana F, Molinaro G, Moroni S, et al. Biomimetic Platelet-Cloaked nanoparticles for the delivery of Anti‐Inflammatory Curcumin in the treatment of atherosclerosis. Adv Healthc Mater. 2024;13(15):2302074.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou L, Zhang Y, Cheraga N, et al. M2 macrophage Membrane-Camouflaged Fe3O4‐Cy7 nanoparticles with reduced immunogenicity for targeted NIR/MR imaging of atherosclerosis. Small. 2024;20(8):2304110.

    Article 
    CAS 

    Google Scholar
     

  • Tariq H, Bukhari SZ, An R, et al. Stem cell-derived exosome delivery systems for treating atherosclerosis: the new frontier of stem cell therapy. Mater Today Bio. 2025;30:101440.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu B, Boakye-Yiadom KO, Yu W, et al. Nanomedicine approaches for advanced diagnosis and treatment of atherosclerosis and related ischemic diseases. Adv Healthc Mater. 2020;9(16):2000336.

    Article 
    CAS 

    Google Scholar
     

  • Cui H, Soga K, Tamehiro N, Okazaki S, Ishikawa N, Morimoto H, et al. Statins repress needle-like carbon nanotube- or cholesterol crystal-stimulated IL-1β production by inhibiting the uptake of crystals by macrophages. Biochem Pharmacol. 2021;188:114580.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng J, Huang H, Chen Y, et al. Nanomedicine for diagnosis and treatment of atherosclerosis. Adv Sci. 2023;10(36):2304294.

    Article 
    CAS 

    Google Scholar
     

  • Woo KS, Yip TWC, Chook P, Lau E, Kwok TC, Chiu KH, et al. Vitamins B-12 and C supplementation improves arterial reactivity and structure in passive smokers: implication in prevention of smoking-related atherosclerosis. J Nutr Health Aging. 2021;25:248–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan W. Application of immunomodulatory biomaterials for cardiovascular repair. 2024.

  • Bouisset F, Sia J, Mizukami T, et al. Titanium-Nitride-Oxide–Coated vs Everolimus-Eluting stents in acute coronary syndrome: 5-Year clinical outcomes of the TIDES-ACS randomized clinical trial. JAMA Cardiol. 2023;8(7):703–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He Y, Sun H, Wang Y, et al. Nb2CTx MXene coating with Inhibition of oxidative stress prepared by Marangoni effect for Hemodialysis therapy. Chem Eng J. 2024;485:150047.

    Article 
    CAS 

    Google Scholar
     

  • Luo X, Fu H, Xu C, Liang C, Li M, Wang Y, et al. Efficient treatment of atherosclerosis by dexamethasone acetate and Rapamycin co-loaded mPEG-DSPE calcium phosphate nanoparticles. J Biomed Nanotechnol. 2020;16(6):810–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zălar DM, Pop C, Buzdugan E, Ionescu A, Dobrescu M, Stan M, et al. Pharmacological effects of methotrexate and Infliximab in a rats model of diet-induced dyslipidemia and beta-3 overexpression on endothelial cells. J Clin Med. 2021;10(14):3143.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ku EJ, Kim BR, Lee JI, Lee KH, Cho YJ, Kang DR, et al. The anti-atherosclerosis effect of Anakinra, a Recombinant human interleukin-1 receptor antagonist, in Apolipoprotein E knockout mice. Int J Mol Sci. 2022;23(9):4906.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim H, Kumar S, Kang DW, Kim CW, Lee IH, Kim JY, et al. Affinity-driven design of cargo-switching nanoparticles to leverage a cholesterol-rich microenvironment for atherosclerosis therapy. ACS Nano. 2020;14(6):6519–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bozaykut P, Ekren R, Sezerman OU, Durakoglugil ME, Kazan D. High-throughput profiling reveals perturbation of Endoplasmic reticulum stress-related genes in atherosclerosis induced by high-cholesterol diet and the protective role of vitamin E. BioFactors. 2020;46(4):653–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian S, Nakamura J, Hiller S, Simington S, Holley DW, Mota R, et al. New insights into Immunomodulation via overexpressing lipoic acid synthase as a therapeutic potential to reduce atherosclerosis. Vasc Pharmacol. 2020;133:106777.

    Article 

    Google Scholar
     

  • Shen J, Li X, Zhang X, Li Z, Abulaiti G, Liu Y, et al. Effects of Xinjiang wild Cherry Plum (Prunus divaricata Ledeb) anthocyanin-rich extract on the plasma metabolome of atherosclerotic apoE-deficient mice fed a high-fat diet. Front Nutr. 2022;9:923699.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li RL, Wang LY, Liu S, Duan HX, Zhang Q, Zhang T, et al. Natural flavonoids derived from fruits are potential agents against atherosclerosis. Front Nutr. 2022;9:862277.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Windler E, Beil FU, Berthold HK, Scharnagl H, Rottbauer W, Nauck M, et al. Phytosterols and cardiovascular risk evaluated against the background of phytosterolemia cases—a German expert panel statement. Nutrients. 2023;15(4):828.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singla B, Lin HP, Ahn WM, et al. Loss of myeloid cell-specific SIRPα, but not CD47, attenuates inflammation and suppresses atherosclerosis. Cardiovascular Res. 2022;118(15):3097–111.

    Article 
    CAS 

    Google Scholar
     

  • Tao W, Yurdagul A Jr, Kong N, et al. SiRNA nanoparticles targeting CaMKIIγ in lesional macrophages improve atherosclerotic plaque stability in mice. Sci Transl Med. 2020;12(553):eaay1063.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang R, Liu R, Liu C, et al. A pH/ROS dual-responsive and targeting nanotherapy for vascular inflammatory diseases. Biomaterials. 2020;230:119605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Q, Fan L, Xu Y. Efficacy of Metoprolol plus Atorvastatin for carotid atherosclerosis and its influence on carotid intima-media thickness and homocysteine level. Am J Transl Res. 2022;14(8):5511.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma Q, Fan Q, Han X, Dong X, Wang Y, Chen Q, et al. Platelet-derived extracellular vesicles to target plaque inflammation for effective anti-atherosclerotic therapy. J Control Release. 2021;329:445–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mallén A, Rodriguez-Urquia R, Alvarez R, Martos-Rodriguez A, Quesada M, Dominguez E, et al. Sex differences in glomerular lesions, in atherosclerosis progression, and in the response to angiotensin-converting enzyme inhibitors in the ApoE–/– mice model. Int J Mol Sci. 2023;24(17):13442.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu M, Zhang Y, Ma X, Jia S, Fang Y, Wang Y, et al. Synthesis and characterization of fucoidan-chitosan nanoparticles targeting P-selectin for effective atherosclerosis therapy. Oxid Med Cell Longev. 2022;2022:8006642.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng H, Konopka CJ, Prabhu S, Sharma B, Duong A, Weinstock D, et al. Dextran-mimetic quantum Dots for multimodal macrophage imaging in vivo, ex vivo, and in situ. ACS Nano. 2022;16(2):1999–2012.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, He H, Mao Y et al. Advances in atherosclerosis theranostics Harnessing iron oxide-based nanoparticles. Adv Sci 2024;2308298.

  • Zhang Y, Ye J, Hosseini-Nassab N, et al. Macrophage-targeted single-walled carbon nanotubes stimulate phagocytosis via pH-dependent drug release. Nano Res. 2021;14:762–69.

    Article 
    CAS 

    Google Scholar
     

  • Zhang X, Rotllan N, Canfrán-Duque A, et al. Targeted suppression of miRNA-33 using pHLIP improves atherosclerosis regression. Circul Res. 2022;131(1):77–90.

    Article 
    CAS 

    Google Scholar
     

  • Dimitroglou Y, Aggeli C, Theofilis P, Tousoulis D, Stellos K, Andreadou I, et al. Novel anti-inflammatory therapies in coronary artery disease and acute coronary syndromes. Life (Basel). 2023;13(8):1669.

    CAS 
    PubMed 

    Google Scholar
     

  • Poels K, Schreurs M, Jansen M, van der Veken C, Jorens P, De Meyer GRY, et al. Immuno-PET imaging of atherosclerotic plaques with [89Zr] Zr-anti-CD40 mAb—proof of concept. Biology (Basel). 2022;11(3):408.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang C, Huang W, Meng Y, Xu L, Cheng Y, Li F, et al. T1-weighted MRI of targeting atherosclerotic plaque based on CD40 expression on engulfed USPIO’s cell surface. Biomed Mater. 2024;19(2):025019.

    Article 
    CAS 

    Google Scholar
     

  • Hu Z, Fang X, Sheng B, Zheng Y, Tao H, Shen Y, et al. Melatonin inhibits macrophage infiltration and promotes plaque stabilization by upregulating anti-inflammatory HGF/c-Met system in the atherosclerotic Rabbit: USPIO-enhanced MRI assessment. Vasc Pharmacol. 2020;127:106659.

    Article 
    CAS 

    Google Scholar
     

  • Zhang S, Xu W, Gao P, Zheng Y, Sun S, Huang X, et al. Construction of dual nanomedicines for the imaging and alleviation of atherosclerosis. Artif Cells Nanomed Biotechnol. 2020;48(1):169–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farjadian F, Ghasemi S, Akbarian M, et al. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem. 2022;10:952675.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng WC, Chan W, Dart A, et al. Novel therapeutic targets and emerging treatments for atherosclerotic cardiovascular disease. Eur Heart Journal-Cardiovascular Pharmacotherapy. 2024;10(1):53–67.

    Article 

    Google Scholar
     

  • Ossoli A, Strazzella A, Rottoli D, et al. CER-001 ameliorates lipid profile and kidney disease in a mouse model of Familial LCAT deficiency. Metabolism. 2021;116:154464.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Centurion F, Chen R, et al. Intravascular imaging of atherosclerosis by using engineered nanoparticles. Biosensors. 2023;13(3):319.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kingwell BA, Nicholls SJ, Velkoska E, et al. Antiatherosclerotic effects of CSL112 mediated by enhanced cholesterol efflux capacity. J Am Heart Association. 2022;11(8):e024754.

    Article 
    CAS 

    Google Scholar
     

  • Pecoraro F, Dinoto E, Pakeliani D, Amato B, Assisi A, Bajardi G, et al. Efficacy and one-year outcomes of Luminor® paclitaxel-coated drug-eluting balloon in the treatment of popliteal artery atherosclerosis lesions. Ann Vasc Surg. 2021;76:370–77.

    Article 
    PubMed 

    Google Scholar
     

  • Di Francesco V, Di Francesco M, Palomba R, Gori M, Gallo G, Vannini E, et al. Towards potent anti-inflammatory therapies in atherosclerosis: the case of methotrexate and Colchicine combination into compartmentalized liposomes. J Drug Deliv Sci Technol. 2023;80:104179.

    Article 

    Google Scholar
     

  • Li T, Safitri M, Zhang K, Wong J, Ma C, Zhen Y, et al. Downregulation of G3BP2 reduces atherosclerotic lesions in ApoE–/–mice. Atherosclerosis. 2020;310:64–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nettersheim FS, De Vore L, Winkels H. Vaccination in atherosclerosis. Cells. 2020;9(12):2560.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ait-Oufella H, Lavillegrand JR, Tedgui A. Regulatory T cell-enhancing therapies to treat atherosclerosis. Cells. 2021;10(4):723.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Wang X, Nie L, Zhao Y, Zhang H, Wang J, et al. The emerging role of Th1 cells in atherosclerosis and its implications for therapy. Front Immunol. 2023;13:1079668.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scisciola L, Cataldo V, Taktaz F, et al. Anti-inflammatory role of SGLT2 inhibitors as part of their anti-atherosclerotic activity: data from basic science and clinical trials. Front Cardiovasc Med. 2022;9:1008922.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He X, Fan X, Bai B, et al. Pyroptosis is a critical immune-inflammatory response involved in atherosclerosis. Pharmacol Res. 2021;165:105447.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lambaren K, Trac N, Fehrenbach D et al. T Cell-Targeting Nanotherapies for Atherosclerosis. Bioconjugate Chemistry, 2025.

  • Mulholland M, Jakobsson G, Lei Y, et al. IL-2Rβγ signalling in lymphocytes promotes systemic inflammation and reduces plasma cholesterol in atherosclerotic mice. Atherosclerosis. 2021;326:1–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Wang W, Li Q, et al. Therapeutic potentials of peptide-derived nanoformulations in atherosclerosis: present status and future directions. Int J Smart Nano Mater. 2024;15(3):610–51.

    Article 

    Google Scholar
     

  • Miranda-Prieto D, Alperi-Lopez M, Perez-Alvarez AI et al. Age-associated B-cells are expanded in early arthritis linked to atherosclerosis and immune circuits-a potential role as a biomarker for risk stratification. MedRxiv. 2025. https://doi.org/10.1101/2025.01.14.25320531.

  • Bhattacharya P, Kanagasooriyan R, Subramanian M. Tackling inflammation in atherosclerosis: are we there yet and what Lies beyond? Curr Opin Pharmacol. 2022;66:102283.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vos WG, Van Os BW, Den Toom M, et al. T cell specific deletion of Casitas B lineage lymphoma-b reduces atherosclerosis, but increases plaque T cell infiltration and systemic T cell activation. Front Immunol. 2024;15:1297893.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milward KF, Wood KJ, Hester J. Enhancing human regulatory T cells in vitro for cell therapy applications. Immunol Lett. 2017;190:139–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lotfy H, Moaaz M, Moaaz M. The novel role of IL-37 to enhance the anti-inflammatory response of regulatory T cells in patients with peripheral atherosclerosis. Vascular. 2020;28(5):629–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munjal A, Khandia R. Atherosclerosis: orchestrating cells and biomolecules involved in its activation and Inhibition. Adv Protein Chem Struct Biol. 2020;120:85–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlöder J, Shahneh F, Schneider FJ, Völkner T, Hoßfeld C, Jungmann A, et al. Boosting regulatory T cell function for the treatment of autoimmune diseases–That’s only half the battle! Front Immunol. 2022;13:973813.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones PW, Mallat Z, Nus M, Arteriosclerosis. Thromb Vascular Biology. 2024;44(7):1502–11.

    Article 
    CAS 

    Google Scholar
     

  • O’Brien JW, Case A, Kemper C, et al. Therapeutic avenues to modulate B-cell function in patients with cardiovascular disease. Arterioscler Thromb Vasc Biol. 2024;44(7):1512–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pattarabanjird T, Li C, McNamara C. B cells in atherosclerosis: mechanisms and potential clinical applications. J Am Coll Cardiol Basic Transl Sci. 2021;6(6):546–63.


    Google Scholar
     

  • Obare LM, Bonami RH, Doran AC, et al. B cells and atherosclerosis: A HIV perspective. J Cell Physiol. 2024;239(6):e31270.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nevado RM, Hamczyk MR, Gonzalo P, Egido J, Andres V. Premature vascular aging with features of plaque vulnerability in an Atheroprone mouse model of Hutchinson–Gilford Progeria syndrome with Ldlr deficiency. Cells. 2020;9(10):2252.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee MKS, Kraakman MJ, Dragoljevic D, Weinstock A, Broer J, Shiri-Sverdlov R, et al. Apoptotic ablation of platelets reduces atherosclerosis in mice with diabetes. Arterioscler Thromb Vasc Biol. 2021;41(3):1167–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blincoe A, Labrosse R, Abraham RS. Acquired B-cell deficiency secondary to B-cell-depleting therapies. J Immunol Methods. 2022;511:113385.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma J, Wang X, Jia Y, et al. The roles of B cells in cardiovascular diseases. Mol Immunol. 2024;171:36–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrison J, Newland SA, Jiang W, et al. Marginal zone B cells produce ‘natural’atheroprotective IgM antibodies in a T cell–dependent manner. Cardiovascular Res. 2024;120(3):318–28.

    Article 
    CAS 

    Google Scholar
     

  • Zhao X, Gao C, Chen H et al. C-reactive protein: an important inflammatory marker of coronary atherosclerotic disease. Angiology. 2024. https://doi.org/10.1177/00033197241273360.

  • Zhao Z, Wang X, Zhang R, Zhang Y, Cheng M, Xu Y, et al. Melatonin attenuates smoking-induced atherosclerosis by activating the Nrf2 pathway via NLRP3 inflammasomes in endothelial cells. Aging. 2021;13(8):11363.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poznyak AV, Melnichenko AA, Wetzker R, Laufer SA, Litvin Y, Orekhov AN, et al. NLPR3 inflammasomes and their significance for atherosclerosis. Biomedicines. 2020;8(7):205.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tall AR, Bornfeldt KE. Inflammasomes and atherosclerosis: a mixed picture. Circ Res. 2023;132(11):1505–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stitham J, Rodriguez-Velez A, Zhang X, Aftab BT, Amin S, Srivastava A, et al. Inflammasomes: a preclinical assessment of targeting in atherosclerosis. Expert Opin Ther Targets. 2020;24(9):825–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu Y, Yan R, Chen X, Xie Z, Chen D, Li H, et al. Paeonol suppresses the effect of ox-LDL on mice vascular endothelial cells by regulating miR-338-3p/TET2 axis in atherosclerosis. Mol Cell Biochem. 2020;475:127–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Y, Li Y, Ran X, Wang D, Huang J, Fan Z, et al. Mettl14 mediates the inflammatory response of macrophages in atherosclerosis through the NF-κB/IL-6 signaling pathway. Cell Mol Life Sci. 2022;79(6):311.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovanen PT. Inhibition of chymase-dependent production of IL-1β by smooth muscle cells in the fibrous caps of human atherosclerotic plaques: a reasonable approach to prevent cap rupture? Atherosclerosis. 2024;390:117412.

  • Luo P, Shi W, Wang Y, Zhong H, Lin D, Liang D, et al. Raloxifene inhibits IL-6/STAT3 signaling pathway and protects against high-fat-induced atherosclerosis in ApoE–/– mice. Life Sci. 2020;261:118304.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edsfeldt A, Gonçalves I, Vigren I, Hedblad B, Gabrielsen A, Melander O, et al. Circulating soluble IL-6 receptor associates with plaque inflammation but not with atherosclerosis severity and cardiovascular risk. Vasc Pharmacol. 2023;152:107214.

    Article 
    CAS 

    Google Scholar
     

  • Rai MK, Jain N, Mohindra N, et al. Clinical and serological associations of subclinical atherosclerosis in spondyloarthropathy. Indian J Rheumatol. 2024;19(1):25–32.

    Article 

    Google Scholar
     

  • Cyr Y, Bozal FK, Barcia Durán JG et al. The IRG1–itaconate axis protects from cholesterol-induced inflammation and atherosclerosis. Proceedings of the National Academy of Sciences, 2024;121(15): e2400675121.

  • Monaco C, Dib L, Atheroimmunology. Keeping the immune system in atherosclerosis in check. Nat Reviews Cardiol. 2024;21(11):737–8.

    Article 

    Google Scholar
     

  • Mao J, Chen Y, Zong Q, et al. Corilagin alleviates atherosclerosis by inhibiting NLRP3 inflammasome activation via the Olfr2 signaling pathway in vitro and in vivo. Front Immunol. 2024;15:1364161.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia D, Zhao M, Zhang X, et al. Transcriptomic analysis reveals the critical role of chemokine signaling in the anti-atherosclerosis effect of Xuefu Zhuyu Decoction. J Ethnopharmacol. 2024;332:118245.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao M, Tang M, Ho W, Chen J, Zou Z, Jiang Z, et al. Modulating plaque inflammation via targeted mRNA nanoparticles for the treatment of atherosclerosis. ACS Nano. 2023;17(18):17721–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kishore R, Magadum A. Cell-specific mRNA therapeutics for cardiovascular diseases and regeneration. J Cardiovasc Dev Dis. 2024;11(2):38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kettunen S, Ruotsalainen AK, Ylä-Herttuala S. RNA interference-based therapies for the control of atherosclerosis risk factors. Curr Opin Cardiol. 2022;37(4):364–71.

    Article 
    PubMed 

    Google Scholar
     

  • Bu T, Li Z, Hou Y, Ma C, Wang Y, Li H, et al. Exosome-mediated delivery of inflammation-responsive IL-10 mRNA for controlled atherosclerosis treatment. Theranostics. 2021;11(20):9988–01.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bejar N, Tat TT, Kiss DL. RNA therapeutics: the next generation of drugs for cardiovascular diseases. Curr Atheroscler Rep. 2022;24(5):307–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim TK, Jeon S, Park S, Lee SH, Han YM, Kim S, et al. 2′–5′ oligoadenylate synthetase-like 1 (OASL1) protects against atherosclerosis by maintaining endothelial nitric oxide synthase mRNA stability. Nat Commun. 2022;13(1):6647.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khair M, Khair M, Vangaveti VN et al. The role of the NLRP3 inflammasome in atherosclerotic disease: systematic review and meta-analysis. J Cardiol. 2024;84(1):14–21.

  • Tang Y, Li Z, Yang H, Zou H, Zhang X, Shen Q, et al. YB1 dephosphorylation attenuates atherosclerosis by promoting CCL2 mRNA decay. Front Cardiovasc Med. 2022;9:945557.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Luo G, Tang Q, Jiang Y, Wang Y, Su Z, et al. Methyltransferase-like 14 Silencing relieves the development of atherosclerosis via m6A modification of p65 mRNA. Bioengineered. 2022;13(5):11832–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng W, Wu D, Sun Y, Liu L, Zhang X, Liu Z, et al. The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages. Sci Rep. 2021;11(1):19305.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ismailani US, Buchler A, MacMullin N, Lam L, Wang Y, Wilson S, et al. Synthesis and evaluation of [11 C] MCC950 for imaging NLRP3-mediated inflammation in atherosclerosis. Mol Pharm. 2023;20(3):1709–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Orecchioni M, Kobiyama K, Winkels H, Ghosh A, Künzel S, Hoeksema M, et al. Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production. Science. 2022;375(6577):214–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma A, Choi JSY, Stefanovic N, Colakovic S, Nelson KA, Lavin D, et al. Specific NLRP3 Inhibition protects against diabetes-associated atherosclerosis. Diabetes. 2021;70(3):772–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lunding LP, Skouras DB, Vock C, Steinmetz T, Becker M, Holzmann M et al. The NLRP3 Inflammasome Inhibitor OLT1177® Ameliorates Experimental Allergic Asthma in Mice. J Immunol. 2022;208(1 Suppl):109.02-109.02.

  • Fidler TP, Xue C, Yalcinkaya M, Sweeney TE, Olesen SW, Bar-Joseph Z, et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature. 2021;592(7853):296–01.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng W, Wu D, Sun Y, et al. The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages. Sci Rep. 2021;11(1):19305.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furuhashi M. Fatty acid-binding protein 4 in cardiovascular and metabolic diseases. J Atheroscler Thromb. 2019;26(3):216–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poznyak AV, Wu WK, Melnichenko AA, Orekhov AN, Sukhorukov VN, Grechko AV, et al. Signaling pathways and key genes involved in regulation of foam cell formation in atherosclerosis. Cells. 2020;9(3):584.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang X, Li Y, Wang W, Li X, Wang C, Zhou G, et al. Nuclear factor erythroid 2 related factor 2 activator JC-5411 inhibits atherosclerosis through suppression of inflammation and regulation of lipid metabolism. Front Pharmacol. 2020;11:532568.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Testa G, Staurenghi E, Giannelli S, Frediani S, Pellegrino M, Ferrara D, et al. Up-regulation of PCSK6 by lipid oxidation products: A possible role in atherosclerosis. Biochimie. 2021;181:191–03.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan AA, Gupta V, Mahapatra NR. Key regulatory MiRNAs in lipid homeostasis: implications for cardiometabolic diseases and development of novel therapeutics. Drug Discov Today. 2022;27(8):2170–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Zhang L, Ren P, Wang H, Liu M, Lu Z, et al. Qing-Xue-Xiao-Zhi formula attenuates atherosclerosis by inhibiting macrophage lipid accumulation and inflammatory response via TLR4/MyD88/NF-κB pathway regulation. Phytomedicine. 2021;93:153812.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du Y, Zhang M, Li Y, Yang Y, Zhang Q, Wang H, et al. Tilianin improves lipid profile and alleviates atherosclerosis in ApoE–/– mice through up-regulation of SREBP2-mediated LDLR expression. Phytomedicine. 2023;109:154577.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv F, Fang H, Huang L, Wu J, Liu Y, Zhang S et al. Curcumin equipped Nanozyme-Like Metal– Organic framework platform for the targeted atherosclerosis treatment with lipid regulation and enhanced magnetic resonance imaging capability. Adv Sci. 2024;11(26):2309062.

  • Wang W, Liang M, Wang L, Bei W, Rong X, Xu J, et al. Role of prostaglandin E2 in macrophage polarization: insights into atherosclerosis. Biochem Pharmacol. 2023;207:115357.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Massaro M, Scoditti E, Calabriso N, Cigliano L, Storelli C, De Caterina R, et al. Chapter 62 – Nutrients and gene expression in cardiovascular disease. In: Principles of nutrigenetics and nutrigenomics. 2020. p. 469–81.https://doi.org/10.1016/B978-0-12-804572-5.00062-8

  • Li H, Bai L, Qin Q, Feng BL, Zhang L, Wei FY, et al. [Research progress on anti-atherosclerosis effect and mechanism of flavonoids compounds mediated by macrophages]. Zhongguo Zhong Yao Za Zhi. 2020;45(12):2827–34.

    PubMed 

    Google Scholar
     

  • Bolea G, Philouze C, Dubois M, Risdon S, Humberclaude A, Ginies C et al. Digestive n-6 lipid oxidation, a key trigger of vascular dysfunction and atherosclerosis in the Western diet: protective effects of Apple polyphenols. Mol Nutr Food Res2021;65(6).

  • Alonso-Piñeiro JA, Gonzalez-Rovira A, Sánchez-Gomar I, Moreno JA, Durán-Ruiz MC. Nrf2 and Heme Oxygenase-1 involvement in atherosclerosis related oxidative stress. Antioxid (Basel). 2021;10(9):1463.

    Article 

    Google Scholar
     

  • Leong XF. Lipid oxidation products on Inflammation-Mediated hypertension and atherosclerosis: A mini review. Front Nutr. 2021;8:717740.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Hadri K, Smith R, Duplus E, El Amri C, Inflammation. Oxidative stress, senescence in atherosclerosis: Thioredoxine-1 as an emerging therapeutic target. Int J Mol Sci. 2021;23(1):77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batty M, Bennett MR, Yu E. The role of oxidative stress in atherosclerosis. Cells. 2022;11(23):3843.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perez-Araluce M, Jüngst T, Sanmartin C, Prosper F, Plano D, Mazo MM. Biomaterials-Based antioxidant strategies for the treatment of oxidative stress diseases. Biomimetics (Basel). 2024;9(1):23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian S, Nakamura J, Hiller S, Simington S, Holley DW, Mota R et al. New insights into Immunomodulation via overexpressing lipoic acid synthase as a therapeutic potential to reduce atherosclerosis. Vascul Pharmacol. 2020;133:106777.

  • Violi F, Nocella C, Loffredo L, Carnevale R, Pignatelli P. Interventional study with vitamin E in cardiovascular disease and meta-analysis. Free Radic Biol Med. 2022;178:26–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bosmans LA, Shami A, Atzler D, Janssen E, Schrijvers DM, Andries LJ, et al. Glucocorticoid induced TNF receptor family-related protein (GITR)–A novel driver of atherosclerosis. Vasc Pharmacol. 2021;139:106884.

    Article 
    CAS 

    Google Scholar
     

  • Winkels H, Meiler S, Lievens D, et al. CD27 co-stimulation increases the abundance of regulatory T cells and reduces atherosclerosis in hyperlipidaemic mice. Eur Heart J. 2017;38(48):3590–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Q, Du H, Fu X, Yu B, Chen T, Jiang L, et al. Artemisinin attenuated atherosclerosis in high-fat diet–fed ApoE–/– mice by promoting macrophage autophagy through the AMPK/mTOR/ULK1 pathway. J Cardiovasc Pharmacol. 2020;75(4):321–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Xu Y, Cheng S, Wu H, Zhao Y, Jin H, et al. Geniposide combined with notoginsenoside R1 attenuates inflammation and apoptosis in atherosclerosis via the AMPK/mTOR/Nrf2 signaling pathway. Front Pharmacol. 2021;12:687394.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sabatine MS, Wiviott SD, Morrow DA, McCabe CH, Cannon CP, Braunwald E. The role of mTOR signaling in atherosclerosis: evidence from clinical and experimental studies. J Cardiovasc Pharmacol. 2019;74(2):113–21.


    Google Scholar
     

  • Wu J, Zhang C, Wang H, Xu S. Targeting mTORC2 in endothelial cells: A novel approach to mitigate vascular inflammation in atherosclerosis. Atheroscler Res. 2020;65(3):175–83.


    Google Scholar
     

  • Zhou X, Huang Z, Xu X, Li Y. Inhibition of mTOR signaling reduces atherosclerosis in human patients: A clinical perspective. Circ Res. 2021;128(4):564–72.


    Google Scholar
     

  • Wang L, Wu T, Si C, Zhang Z, Li Y, Chen J, Sun H. Danlou tablet activates autophagy of vascular adventitial fibroblasts through PI3K/Akt/mTOR to protect cells from damage caused by atherosclerosis. Front Pharmacol. 2021;12:730525.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng X, Du M, Li S, Liu Q, Zhao R, Wang Y, Zhou L, et al. Hydroxysafflor yellow A regulates lymphangiogenesis and inflammation via the Inhibition of PI3K on regulating AKT/mTOR and NF-κB pathway in macrophages to reduce atherosclerosis in ApoE–/– mice. Phytomedicine. 2023;112:154684.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poznyak AV, Sukhorukov VN, Zhuravlev A, Ivanov S, Petrov M, Orlov D, et al. Modulating mTOR signaling as a promising therapeutic strategy for atherosclerosis. Int J Mol Sci. 2022;23(3):1153.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Liu J, Duan H, Wang S, Li Y, Ma Z. Activation of Nrf2/HO-1 signaling: an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res. 2021;34:43–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Chen L, Liu Y, Zhou X. Activation of the Nrf2/HO-1 signaling pathway ameliorates atherosclerosis in animal models. J Cardiovasc Pharmacol. 2020;75(3):299–08.


    Google Scholar
     

  • Li W, Wang C, Wang H, Sun Y, Xu J, Zhu B, Zhang F. Nrf2 activators improve endothelial function and reduce atherosclerotic plaque formation. Atherosclerosis Res. 2021;68(4):212–20.


    Google Scholar
     

  • Smith A, Johnson R, Lee T, Kim J, Brown M, Davis L. The role of Nrf2 in cardiovascular disease: implications for therapy. Cardiovasc Rev. 2022;10(2):143–54.


    Google Scholar
     

  • Barrett TJ, Li Y, Zeng J, Guo Q, Ma X, Zhou W. Macrophages in atherosclerosis regression. Arterioscler Thromb Vasc Biol. 2020;40(1):20–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Schilperoort M, Cao Y, Wang H, Zhang L, Liu Q, Li T, et al. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat Rev Cardiol. 2022;19(4):228–49.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Y, Zhang K, Li T, Zhang J, Zhao M. Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Theranostics. 2021;11(1):164.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuznetsova T, Prange KHM, Glass CK, Liu Y, Huang Y. Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nat Rev Cardiol. 2020;17(4):216–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu G, Zhang J, Zhao Q, Li X, Hu X. Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic Heme biosynthesis for atherosclerosis treatment. Angew Chem. 2020;132(10):4097–03.

    Article 

    Google Scholar
     

  • Flores AM, Hosseini-Nassab N, Jarr KU, Hsu J, Huang Z, Chen R, et al. Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat Nanotechnol. 2020;15(2):154–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahman K, Vengrenyuk Y, Ramsey SA, Fredrickson J, Kim Y, Zaman J. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J Clin Invest. 2017;127(8):2904–15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma M, Schlegel MP, Afonso MS, Mehta J, Zhang L, Davis D. Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression. Circ Res. 2020;127(3):335–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gharavi AT, Hanjani NA, Movahed E, et al. The role of macrophage subtypes and exosomes in Immunomodulation. Cell Mol Biol Lett. 2022;27(1):83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song K, Tang Z, Song Z, Li X, Zhao Y. Hyaluronic acid-functionalized mesoporous silica nanoparticles loading Simvastatin for targeted therapy of atherosclerosis. Pharmaceutics. 2022;14(6):1265.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen TK, Paone S, Chan E, Poon IKH, Baxter AA, Thomas SR, et al. Heparanase: A novel therapeutic target for the treatment of atherosclerosis. Cells. 2022;11(20):3198.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mamoudou H, Başaran B, Mune MAM, Said M, Zhang L, Wang J. Bioactive peptides derived from the enzymatic hydrolysis of Cowhide collagen for the potential treatment of atherosclerosis: a computational approach. Intell Pharm 2024;2(4):456–66.

  • Poznyak AV, Grechko AV, Orekhova VA, Zhang D, Ivanova E, Sobenin IA, et al. Oxidative stress and antioxidants in atherosclerosis development and treatment. Biology. 2020;9(3):60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fouad GI, Ibrahim N, Mahmoud A et al. Synergistic anti-atherosclerotic role of combined treatment of omega-3 and co-enzyme Q10 in hypercholesterolemia-induced obese rats. Heliyon 2020;6(4).

  • Bantwal A, Singh A, Menon AR, Raj A, Ramachandra P, Anandakumar S, et al. Pathogenesis of atherosclerosis and its influence on local hemodynamics: A comparative FSI study in healthy and mildly stenosed carotid arteries. Int J Eng Sci. 2021;167:103525.

    Article 

    Google Scholar
     

  • Yamaguchi T, Morino K, Nishimura T, et al. Perivascular mechanical environment: A narrative review of the role of externally applied mechanical force in the pathogenesis of atherosclerosis. Front Cardiovasc Med. 2022;9:944356.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu H, He Y, Hong T, Li J, Zhou W, Zhao Z. Piezo1 in vascular remodeling of atherosclerosis and pulmonary arterial hypertension: a potential therapeutic target. Front Cardiovasc Med. 2022;9:1021540.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy P, Orecchioni M, Ley K, Moore K, Brown J, Zhao Q, et al. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol. 2022;22(4):251–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ley K, Jensen D, Laufer T, Zhang R, Kim Y, Harris N. Role of the adaptive immune system in atherosclerosis. Biochem Soc Trans. 2020;48(5):2273–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surma S, Sahebkar A, Banach M. Whether and why do we need a vaccine against atherosclerosis? Can we expect it anytime soon? Curr Atheroscler Rep. 2024;26(3):59–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma B, Xu H, Zhuang W, Wang Y, Liu Q, Chen H, et al. ROS responsive nanoplatform with two-photon AIE imaging for atherosclerosis diagnosis and two-pronged therapy. Small. 2020;16(45):2003253.

    Article 
    CAS 

    Google Scholar
     

  • Zhang S, Huang H, Li Y, Zhang L, Liu X, Sun X, et al. Yin-xing-tong-mai Decoction attenuates atherosclerosis via activating PPARγ-LXRα-ABCA1/ABCG1 pathway. Pharmacol Res. 2021;169:105639.

    Article 
    PubMed 

    Google Scholar
     

  • Hossaini Nasr S, Huang X. Nanotechnology for targeted therapy of atherosclerosis. Front Pharmacol. 2021;12:755569.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu D, Hu Q, Wang Y, Tang J, Luo Y, Zhang J, et al. Identification of HMOX1 as a critical ferroptosis-related gene in atherosclerosis. Front Cardiovasc Med. 2022;9:833642.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talev J, Kanwar JR. Iron oxide nanoparticles as imaging and therapeutic agents for atherosclerosis. Semin Thromb Hemost. 2020;46(5):553–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez DM, Giannarelli C. Immune cell profiling in atherosclerosis: role in research and precision medicine. Nat Rev Cardiol. 2022;19(1):43–58.

    Article 
    PubMed 

    Google Scholar
     

  • Lin P, Ji HH, Li YJ, Guo Y, Chen XQ, Wang Y, et al. Macrophage plasticity and atherosclerosis therapy. Front Mol Biosci. 2021;8:679797.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suero-Abreu GA, Zanni MV, Neilan TG. Atherosclerosis with immune checkpoint inhibitor therapy: evidence, diagnosis, and management: JACC: cardiooncology State-of-the-Art review. Cardio Oncol. 2022;4(5):598–15.


    Google Scholar
     

  • Xu C, Zhang X, Yang W, et al. Effective prevention of atherosclerosis by non-viral delivery of CRISPR/Cas9. Nano Today. 2024;54:102097.

    Article 
    CAS 

    Google Scholar
     

  • Wu D, Pan Y, Yang S, et al. PCSK9Qβ-003 vaccine attenuates atherosclerosis in Apolipoprotein E-deficient mice. Cardiovasc Drugs Ther. 2021;35:141–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Z, Mao C, Chen X, et al. Peptide vaccine against ADAMTS-7 ameliorates atherosclerosis and postinjury Neointima hyperplasia. Circulation. 2023;147(9):728–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreno-Gonzalez MA, Ortega-Rivera OA, Steinmetz NF. Two decades of vaccine development against atherosclerosis. Nano Today. 2023;50:101822.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ortega-Rivera OA, Shin MD, Moreno‐Gonzalez MA, et al. A single‐dose Qβ VLP vaccine against S100A9 protein reduces atherosclerosis in a preclinical model. Adv Ther. 2022;5(10):2200092.

    Article 
    CAS 

    Google Scholar
     

  • Xu H, Zheng J, Zhao X, et al. Inactivated whole-virion SARS-CoV-2 vaccines and long-term clinical outcomes in patients with coronary atherosclerosis disease in China: a prospective cohort study. Cardiovascular Res. 2023;119(6):1352–60.

    Article 
    CAS 

    Google Scholar
     

  • Tang D, Liu Y, Duan R, et al. COL6A6 peptide vaccine alleviates atherosclerosis through inducing immune response and regulating lipid metabolism in Apoe–/– mice. Cells. 2024;13(18):1589.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elías-López D, Doi T, Nordestgaard BG, et al. Remnant cholesterol and low-grade inflammation jointly in atherosclerotic cardiovascular disease: implications for clinical trials. Curr Opin Clin Nutr Metabolic Care. 2024;27(2):125–35.

    Article 

    Google Scholar
     

  • Arya P, Sharma V, Thapliyal S, et al. Preclinical models of atherosclerosis: an overview. Iran J Basic Med Sci. 2024;27(5):535.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments