Yewdall, N. A., Mason, A. F. & Van Hest, J. C. M. The hallmarks of living systems: towards creating artificial cells. Interface Focus 8, 20180023 (2018).
Gánti, T. The Principles of Life (Oxford Univ. Press, 2006).
Otrin, L. et al. Artificial organelles for energy regeneration. Adv. Biosys. 3, 1800323 (2019).
Staufer, O. et al. Building a community to engineer synthetic cells and organelles from the bottom-up. eLife 10, e73556 (2021).
Schwille, P. et al. MaxSynBio: avenues towards creating cells from the bottom up. Angew. Chem. Int. Ed. 57, 13382–13392 (2018).
Staufer, O. et al. Bottom-up assembly of biomedical relevant fully synthetic extracellular vesicles. Sci. Adv. 7, eabg6666 (2021).
Choi, H.-J. & Montemagno, C. D. Artificial organelle: ATP synthesis from cellular mimetic polymersomes. Nano Lett. 5, 2538–2542 (2005).
Steinberg-Yfrach, G. et al. Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 392, 479–482 (1998).
Berhanu, S., Ueda, T. & Kuruma, Y. Artificial photosynthetic cell producing energy for protein synthesis. Nat. Commun. 10, 1325 (2019).
Lee, K. Y. et al. Photosynthetic artificial organelles sustain and control ATP-dependent reactions in a protocellular system. Nat. Biotechnol. 36, 530–535 (2018).
Altamura, E. et al. Chromatophores efficiently promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment artificial cells. Proc. Natl Acad. Sci. USA 118, e2012170118 (2021).
Otrin, L. et al. Toward artificial mitochondrion: mimicking oxidative phosphorylation in polymer and hybrid membranes. Nano Lett. 17, 6816–6821 (2017).
Biner, O., Fedor, J. G., Yin, Z. & Hirst, J. Bottom-up construction of a minimal system for cellular respiration and energy regeneration. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.0c00110 (2020).
Pols, T. et al. A synthetic metabolic network for physicochemical homeostasis. Nat. Commun. 10, 4239 (2019).
Luo, S. et al. ATP production from electricity with a new-to-nature electrobiological module. Joule 7, 1745–1758 (2023).
Bailoni, E. et al. Minimal out-of-equilibrium metabolism for synthetic cells: a membrane perspective. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.3c00062 (2023).
Sikkema, H. R., Gaastra, B. F., Pols, T. & Poolman, B. Cell fuelling and metabolic energy conservation in synthetic cells. ChemBioChem 20, 2581–2592 (2019).
Ma, B. C. et al. Polymer-based module for NAD+ regeneration with visible light. ChemBioChem 20, 2593–2596 (2019).
Partipilo, M. et al. Minimal pathway for the regeneration of redox cofactors. JACS Au 1, 2280–2293 (2021).
Rivas, G. & Minton, A. P. Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem. Sci. 41, 970–981 (2016).
Andersen, D. G. et al. Chemical zymogens and transmembrane activation of transcription in synthetic cells. Adv. Mater. 36, 2309385 (2024).
Buddingh, B. C., Elzinga, J. & Van Hest, J. C. M. Intercellular communication between artificial cells by allosteric amplification of a molecular signal. Nat. Commun. 11, 1652 (2020).
Bailoni, E. & Poolman, B. ATP recycling fuels sustainable glycerol 3-phosphate formation in synthetic cells fed by dynamic dialysis. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.2c00075 (2022).
Bailoni, E. et al. Synthetic vesicles for sustainable energy recycling and delivery of building blocks for lipid biosynthesis. ACS Synth. Biol. 13, 1549–1561 (2024).
Ruprecht, J. J. & Kunji, E. R. Structural changes in the transport cycle of the mitochondrial ADP/ATP carrier. Curr. Opin. Struct. Biol. 57, 135–144 (2019).
King, M. S., Kerr, M., Crichton, P. G., Springett, R. & Kunji, E. R. S. Formation of a cytoplasmic salt bridge network in the matrix state is a fundamental step in the transport mechanism of the mitochondrial ADP/ATP carrier. Biochim. Biophys. Acta 1857, 14–22 (2016).
Ruprecht, J. J. et al. The molecular mechanism of transport by the mitochondrial ADP/ATP carrier. Cell 176, 435–447.e15 (2019).
Kunji, E. R. S. et al. The transport mechanism of the mitochondrial ADP/ATP carrier. Biochim. Biophys. Acta 1863, 2379–2393 (2016).
Wagner, S., Bader, M. L., Drew, D. & De Gier, J.-W. Rationalizing membrane protein overexpression. Trends Biotechnol. 24, 364–371 (2006).
Geertsma, E. R., Nik Mahmood, N. A. B., Schuurman-Wolters, G. K. & Poolman, B. Membrane reconstitution of ABC transporters and assays of translocator function. Nat. Protoc. 3, 256–266 (2008).
Ruprecht, J. J. et al. Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism. Proc. Natl Acad. Sci. USA 111, E426–34 (2014).
Funai, K., Summers, S. A. & Rutter, J. Reign in the membrane: how common lipids govern mitochondrial function. Curr. Opin. Cell Biol. 63, 162–173 (2020).
Bamber, L., Harding, M., Butler, P. J. G. & Kunji, E. R. S. Yeast mitochondrial ADP/ATP carriers are monomeric in detergents. Proc. Natl Acad. Sci. USA 103, 16224–16229 (2006).
Klingenberg, M. The ADP and ATP transport in mitochondria and its carrier. Biochim. Biophys. Acta 1778, 1978–2021 (2008).
Pols, T., Singh, S., Deelman-Driessen, C., Gaastra, B. F. & Poolman, B. Enzymology of the pathway for ATP production by arginine breakdown. FEBS J. 288, 293–309 (2021).
Tantama, M., Martínez-François, J. R., Mongeon, R. & Yellen, G. Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nat. Commun. 4, 2550 (2013).
Hoffmann, T. & Bremer, E. Guardians in a stressful world: the Opu family of compatible solute transporters from Bacillus subtilis. Biol. Chem. 398, 193–214 (2017).
Biemans-Oldehinkel, E., Mahmood, N. A. B. N. & Poolman, B. A sensor for intracellular ionic strength. Proc. Natl Acad. Sci. USA 103, 10624–10629 (2006).
van der Heide, T. On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine. EMBO J. 20, 7022–7032 (2001).
Patzlaff, J. S., van der Heide, T. & Poolman, B. The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. J. Biol. Chem. 278, 29546–29551 (2003).
Biemans-Oldehinkel, E. On the role of the two extracytoplasmic substrate-binding domains in the ABC transporter OpuA. EMBO J. 22, 5983–5993 (2003).
Imran, A., Popescu, D. & Movileanu, L. Cyclic activity of an osmotically stressed liposome in a finite hypotonic environment. Langmuir 36, 3659–3666 (2020).
Su, W.-C., Gettel, D. L., Chabanon, M., Rangamani, P. & Parikh, A. N. Pulsatile gating of giant vesicles containing macromolecular crowding agents induced by colligative nonideality. J. Am. Chem. Soc. 140, 691–699 (2018).
Sikkema, H. R. et al. Gating by ionic strength and safety check by cyclic-di-AMP in the ABC transporter OpuA. Sci. Adv. 6, eabd7697 (2020).
Van Den Noort, M., Drougkas, P., Paulino, C. & Poolman, B. The substrate-binding domains of the osmoregulatory ABC importer OpuA transiently interact. eLife 12, RP90996 (2024).
Commichau, F. M., Gibhardt, J., Halbedel, S., Gundlach, J. & Stülke, J. A delicate connection: c-di-AMP affects cell integrity by controlling osmolyte transport. Trends Microbiol. 26, 175–185 (2018).
Ji, Y., Chakraborty, T. & Wegner, S. V. Self-regulated and bidirectional communication in synthetic cell communities. ACS Nano 17, 8992–9002 (2023).
Tang, T.-Y. D. et al. Gene-mediated chemical communication in synthetic protocell communities. ACS Synth. Biol. 7, 339–346 (2018).
King, M. S. & Kunji, E. R. S. in Expression, Purification, and Structural Biology of Membrane Proteins Vol. 2127 (eds Perez, C. & Maier, T.) 47–61 (Springer US, 2020).