Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).
Smejkal, L., Gonzalez-Hernandez, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).
Mazin, I. Altermagnetism—a new punch line of fundamental magnetism. Phys. Rev. X 12, 040002 (2022).
Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).
Yan, H., Zhou, X., Qin, P. & Liu, Z. Review on spin-split antiferromagnetic spintronics. Appl. Phys. Lett. 124, 030503 (2024).
Sinova, J. et al. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).
Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).
Gao, A. et al. Layer Hall effect in a 2D topological axion antiferromagnet. Nature 595, 521–525 (2021).
Šmejkal, L. et al. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).
Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).
Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).
Yuan, L.-D. et al. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020).
Zhu, Y.-P. et al. Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523–528 (2024).
Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517–522 (2024).
Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).
Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).
Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 1, 646–661 (2019).
Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).
Sierra, J. F. et al. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 16, 856–868 (2021).
Kurebayashi, H. et al. Magnetism, symmetry and spin transport in van der Waals layered systems. Nat. Rev. Phys. 4, 150–166 (2022).
Gong, S. J. et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. Proc. Natl Acad. Sci. USA 115, 8511–8516 (2018).
Lv, H., Niu, Y., Wu, X. & Yang, J. Electric-field tunable magnetism in van der Waals bilayers with A-type antiferromagnetic order: unipolar versus bipolar magnetic semiconductor. Nano Lett. 21, 7050–7055 (2021).
Deng, J. et al. Two-dimensional bipolar ferromagnetic semiconductors from layered antiferromagnets. Phys. Rev. Mater. 5, 034005 (2021).
Dang, W. et al. Electric-field-tunable spin polarization and carrier-transport anisotropy in an A-type antiferromagnetic van der Waals bilayer. Phys. Rev. Appl. 18, 064086 (2022).
Marian, D. et al. Electrically tunable lateral spin-valve transistor based on bilayer CrI3. npj 2D Mater. Appl. 7, 42 (2023).
Oostinga, J. B. et al. Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7, 151–157 (2008).
Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).
Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).
Jiang, S. et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).
Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).
Lee, J. et al. Structural and optical properties of single- and few-layer magnetic semiconductor CrPS4. ACS Nano 11, 10935–10944 (2017).
Calder, S. et al. Magnetic structure and exchange interactions in the layered semiconductor CrPS4. Phys. Rev. B 102, 024408 (2020).
Peng, Y. et al. Magnetic structure and metamagnetic transitions in the van der Waals antiferromagnet CrPS4. Adv. Mater. 32, 2001200 (2020).
Son, J. et al. Air-stable and layer-dependent ferromagnetism in atomically thin van der Waals CrPS4. ACS Nano 15, 16904–16912 (2021).
Wu, F. et al. Gate-controlled magnetotransport and electrostatic modulation of magnetism in 2D magnetic semiconductor CrPS4. Adv. Mater. 35, e2211653 (2023).
Wu, F. et al. Magnetism-induced band-edge shift as the mechanism for magnetoconductance in CrPS4 transistors. Nano Lett. 23, 8140–8145 (2023).
Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018).
Li, J., Gutierrez-Lezama, I. & Morpurgo, A. F. Magneto-transport study in 2D magnetic semiconductor multi-terminal FET. Zenodo https://doi.org/10.5281/zenodo.12702065 (2024).
Chang, J.-F. et al. Hall-effect measurements probing the degree of charge-carrier delocalization in solution-processed crystalline molecular semiconductors. Phys. Rev. Lett. 107, 066601 (2011).
Wang, Z. et al. Determining the phase diagram of atomically thin layered antiferromagnet CrCl3. Nat. Nanotechnol. 14, 1116–1122 (2019).
Yao, F. et al. Multiple antiferromagnetic phases and magnetic anisotropy in exfoliated CrBr3 multilayers. Nat. Commun. 14, 4969 (2023).
Tang, M. et al. Continuous manipulation of magnetic anisotropy in a van der Waals ferromagnet via electrical gating. Nat. Electron. 6, 28–36 (2023).
Clark, A. E. & Callen, E. Néel ferrimagnets in large magnetic fields. J. Appl. Phys. 39, 5972–5982 (1968).
Coey, J. M. Magnetism and Magnetic Materials (Cambridge Univ. Press, 2010).
Zhuang, H. L. & Zhou, J. Density functional theory study of bulk and single-layer magnetic semiconductor CrPS4. Phys. Rev. B 94, 195307 (2016).
Ye, C. et al. Layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr. ACS Nano 16, 11876–11883 (2022).
Son, Y.-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Condens. Matter Phys. 21, 395502 (2009).
Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Condens. Matter Phys. 29, 465901 (2017).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Prandini, G. et al. Precision and efficiency in solid-state pseudopotential calculations. npj Comput. Mater. 4, 72 (2018).
Sohier, T., Calandra, M. & Mauri, F. Density functional perturbation theory for gated two-dimensional heterostructures: theoretical developments and application to flexural phonons in graphene. Phys. Rev. B 96, 075448 (2017).