sábado, maio 10, 2025
HomeNanotechnologySingle-layer waveguide displays using achromatic metagratings for full-colour augmented reality

Single-layer waveguide displays using achromatic metagratings for full-colour augmented reality


  • Kress, B. & Starner, T. A review of head-mounted displays (HMD) technologies and applications for consumer electronics. Photonic Appl. Aerosp. Commer. Harsh Environ. 8720, 62–74 (2013).

  • Olsson, M. I. Wearable device with input and output structures. US patent 20,130,044,042 (2011).

  • Zheng, Z., Liu, X., Li, H. & Xu, L. Design and fabrication of an off-axis see-through head-mounted display with an xy polynomial surface. Appl. Opt. 49, 3661–3668 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Wei, L., Li, Y., Jing, J., Feng, L. & Zhou, J. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface. Opt. Express 26, 8550–8565 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, J. Y. & Kim, J. Prescription AR: a fully-customized prescription-embedded augmented reality display. Opt. Express 28, 6225–6241 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, H. & Hua, H. High-performance integral-imaging-based light field augmented reality display using freeform optics. Opt. Express 26, 17578–17590 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Maimone, A., Georgiou, A. & Kollin, J. S. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 36, 85 (2017).

    Article 

    Google Scholar
     

  • Jang, C. et al. Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina. ACM Trans. Graph. 36, 190 (2017).

    Article 

    Google Scholar
     

  • Kim, S. B. & Park, J. H. Optical see-through Maxwellian near-to-eye display with an enlarged eyebox. Opt. Lett. 43, 767–770 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Maimone, A. et al. Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources. ACM Trans. Graph. 33, 89 (2014).

    Article 

    Google Scholar
     

  • Jeong, J. et al. Holographically printed freeform mirror array for augmented reality near-eye display. IEEE Photonics Technol. Lett. 32, 991–994 (2020).

    Article 

    Google Scholar
     

  • Lee, B., Jo, Y., Yoo, D. & Lee, J. Recent progresses of near-eye display for AR and VR. In Multimodal Sensing and Artificial Intelligence: Technologies and Applications II (ed. Stella, E.) vol. 11785, 1178503. International Society for Optics and Photonics (SPIE, 2021).

  • Kress, B. C. Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets (Society of Photo-Optical Instrumentation Engineers, 2020).

  • Levola, T. 7.1: Invited paper: novel diffractive optical components for near to eye displays. In SID Symposium Digest of Technical Papers, vol. 37, 64–67 (Wiley Online Library, 2006).

  • Kress, B. C. & Chatterjee, I. Waveguide combiners for mixed reality headsets: a nanophotonics design perspective. Nanophotonics 10, 41–74 (2021).

    Article 

    Google Scholar
     

  • Amitai, Y. Substrate-guided optical devices. US patent 7,672,055 (2010).

  • Ding, Y. et al. Waveguide-based augmented reality displays: perspectives and challenges. eLight 3, 24 (2023).

    Article 

    Google Scholar
     

  • Cheng, D., Wang, Y., Xu, C., Song, W. & Jin, G. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics. Opt. Express 22, 20705–20719 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, M. & Hua, H. Methods of optimizing and evaluating geometrical light guides with microstructure mirrors for augmented reality displays. Opt. Express 27, 5523–5543 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Äyräs, P., Saarikko, P. & Levola, T. Exit pupil expander with a large field of view based on diffractive optics. J. Soc. Inf. Disp. 17, 659–664 (2009).

    Article 

    Google Scholar
     

  • Yeoh, I. L. Wavelength multiplexing in waveguides. US patent 0,329,075 (2017).

  • Saarikko, P. Waveguide. US patent 0,231,568 (2016).

  • Yang, Q., Ding, Y. & Wu, S. T. Full-color, wide field-of-view single-layer waveguide for augmented reality displays. J. Soc. Inf. Disp. 32, 247–254 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ding, Y., Li, Y., Yang, Q. & Wu, S. T. Design optimization of polarization volume gratings for full-color waveguide-based augmented reality displays. J. Soc. Inf. Disp. 31, 380–386 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gu, Y. et al. A study of the field of view performance for full-color waveguide displays based on polarization volume gratings. Crystals 12, 1805 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Guo, Q., Zhang, S., Zhang, J. & Chen, C. P. Design of single-layer color echelle grating optical waveguide for augmented-reality display. Opt. Express 31, 3954–3969 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Gopakumar, M. et al. Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature 629, 791–797 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, Z. L., Zhang, S. & Wang, G. P. Wide-angled off-axis achromatic metasurfaces for visible light. Opt. Express 24, 23118–23128 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12, 5750–5755 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Escuti, M. J., Kim, J. & Kudenov, M. W. Controlling light with geometric-phase holograms. Opt. Photonics News 27, 22–29 (2016).

    Article 

    Google Scholar
     

  • Luo, W., Xiao, S., He, Q., Sun, S. & Zhou, L. Photonic spin Hall effect with nearly 100% efficiency. Adv. Opt. Mater. 3, 1102–1108 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Song, N. et al. Broadband achromatic metasurfaces for longwave infrared applications. Nanomaterials 11, 2760 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devlin, R. C., Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl Acad. Sci. USA 113, 10473–10478 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hecht, E. in Optics Ch. 4 (Pearson Edu. Press, 2017).

  • Azzam, R. M. A. Circular and near-circular polarization states of evanescent monochromatic light fields in total internal reflection. Appl. Opt. 50, 6272–6276 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, J. & Wu, S. T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight 1, 3 (2021).

    Article 

    Google Scholar
     

  • Chen, W. T. et al. Dispersion-engineered metasurfaces reaching broadband 90% relative diffraction efficiency. Nat. Commun. 14, 2544 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S., Kim, J., Kim, K., Jeong, M. & Rho, J. Anti-aliased metasurfaces beyond the Nyquist limit. Nat. Commun. 16, 411 (2025).

  • Brown, R. D. Transparent waveguide display. EP patent 2,733,517 (2014).

  • Grey, D. Exit pupil expanding diffractive optical waveguide device. US patent 10,359,635 (2019).

  • Cheng, D. et al. Design and manufacture AR head-mounted displays: a review and outlook. Light Adv. Manuf. 2, 350–369 (2021).


    Google Scholar
     

  • Liu, S. et al. Waveguide using grating coupler for uniform luminance and color AR display. In Optical Design and Testing X, vol. 11548, 74–80 (SPIE, 2022).

  • Ni, D. et al. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization. Opt. Express 30, 24523–24543 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wall, R. A. Waveguide-based displays with exit pupil expander. US patent 10,025,093 (2017).

  • Abovitz, R. Planar waveguide apparatus with diffraction element(s) and system employing same. US patent 9,671,566 (2015).

  • Maikisch, J. S. & Gaylord, T. K. Optimum parallel-face slanted surface-relief gratings. Appl. Opt. 46, 3674–3681 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Jin, G. et al. High efficiency polarization-independent slanted grating for RGB bands. IEEE Photonics J. 13, 1–8 (2021).


    Google Scholar
     

  • Levola, T. Diffractive optics for virtual reality displays. J. Soc. Inf. Disp. 14, 467–475 (2006).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Slanted TiO2 metagratings for large-angle, high-efficiency anomalous refraction in the visible. Laser Photonics Rev. 17, 2200712 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, T., Cao, L., He, Q. & Jin, G. Slanted volume holographic gratings design based on rigorous coupled-wave analysis. In Holography, Diffractive Optics, and Applications V, vol. 8556, 105–112 (SPIE, 2012).

  • Kim, J. et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater. 22, 474–481 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. A water-soluble label for food products prevents packaging waste and counterfeiting. Nat. Food 5, 293–300 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. Amorphous to crystalline transition in nanoimprinted sol–gel titanium oxide metasurfaces. Adv. Mater. 37, 2405378 (2025).


    Google Scholar
     

  • Kim, J. et al. Wafer-scale, centimeter-sized, high-efficiency metalenses in the ultraviolet. Mater. Today 73, 9–15 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. One-step printable platform for high-efficiency metasurfaces down to the deep-ultraviolet region. Light Sci. Appl. 12, 68 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, M. et al. Roll-to-plate printable RGB achromatic metalens for wide-field-of-view holographic near-eye displays. Nat. Mater. 24, 535–543 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments