Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).
Wu, M. & Li, J. Sliding ferroelectricity in 2D van der Waals materials: related physics and future opportunities. Proc. Natl Acad. Sci. USA 118, e2115703118 (2021).
Liang, J. et al. Optically probing the asymmetric interlayer coupling in rhombohedral-stacked MoS2 bilayer. Phys. Rev. 12, 041005 (2022).
Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).
Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).
Meng, P. et al. Sliding induced multiple polarization states in two-dimensional ferroelectrics. Nat. Commun. 13, 7696 (2022).
Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).
Liang, J. et al. Shear strain-induced two-dimensional slip avalanches in rhombohedral MoS2. Nano Lett. 23, 7228–7235 (2023).
Yang, D. et al. Non-volatile electrical polarization switching via domain wall release in 3R-MoS2 bilayer. Nat. Commun. 14, 1389 (2024).
Ko, K. et al. Operando electron microscopy investigation of polar domain dynamics in twisted van der Waals homobilayers. Nat. Mater. 22, 992–998 (2023).
Molino, L. et al. Ferroelectric switching at symmetry-broken interfaces by local control of dislocations networks. Adv. Mater. 35, 2207816 (2023).
Ji, J., Yu, G., Xu, C. & Xiang, H. J. General theory for bilayer stacking ferroelectricity. Phys. Rev. Lett. 130, 146801 (2023).
Wang, L. et al. Bevel-edge epitaxy of ferroelectric rhombohedral boron nitride single crystal. Nature 629, 74–79 (2024).
Bennett, D. Theory of polar domains in moiré heterostructures. Physical Review B 105, 235445 (2022).
Bennett, D. & Remez, B. On electrically tunable stacking domains and ferroelectricity in moiré superlattices. NPJ 2D Mater. Appl. 6, 7 (2022).
Enaldiev, V. V., Ferreira, F. & Fal’ko, V. I. A scalable network model for electrically tunable ferroelectric domain structure in twistronic bilayers of two-dimensional semiconductors. Nano Lett. 22, 1534–1540 (2022).
Bennett, D., Chaudhary, G., Slager, R.-J., Bousquet, E. & Ghosez, P. Polar meron–antimeron networks in strained and twisted bilayers. Nat. Commun. 14, 1629 (2023).
Yang, D. et al. Spontaneous-polarization-induced photovoltaic effect in rhombohedrally stacked MoS2. Nat. Photonics 16, 469–474 (2022).
Wu, J. et al. Ultrafast response of spontaneous photovoltaic effect in 3R-MoS2-based heterostructures. Sci. Adv. 8, eade3759 (2022).
Dong, Y. et al. Giant bulk piezophotovoltaic effect in 3R-MoS2. Nat. Nanotechnol. 18, 36–41 (2023).
Sung, J. et al. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 15, 750–754 (2020).
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).
Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).
Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).
Leisgang, N. et al. Giant Stark splitting of an exciton in bilayer MoS2. Nat. Nanotechnol. 15, 901–907 (2020).
Yu, H., Liu, G.-B. & Yao, W. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater. 5, 035021 (2018).
Robert, C. et al. Measurement of the spin-forbidden dark excitons in MoS2 and MoSe2 monolayers. Nat. Commun. 11, 4037 (2020).
Zhao, Y. C. et al. Interlayer exciton complexes in bilayer MoS2. Physical Review B 105, L041411 (2022).
Lin, K.-Q. et al. Ultraviolet interlayer excitons in bilayer WSe2. Nat. Nanotechnol. 19, 196–201 (2023).
Klein, J. et al. Stark effect spectroscopy of mono- and few-layer MoS2. Nano Lett. 16, 1554–1559 (2016).
Abraham, N., Watanabe, K., Taniguchi, T. & Majumdar, K. Anomalous Stark shift of excitonic complexes in monolayer WS2. Physical Review B 103, 075430 (2021).
Tagantsev, A. K., Stolichnov, I., Colla, E. L. & Setter, N. Polarization fatigue in ferroelectric films: basic experimental findings, phenomenological scenarios, and microscopic features. J. Appl. Phys. 90, 1387–1402 (2001).
Yang, S. M., Kim, T. H., Yoon, J. G. & Noh, T. W. Nanoscale observation of time-dependent domain wall pinning as the origin of polarization fatigue. Adv. Funct. Mater. 22, 2310–2317 (2012).
Genenko, Y. A., Glaum, J., Hoffmann, M. J. & Albe, K. Mechanisms of aging and fatigue in ferroelectrics. Mater. Sci. Eng. B 192, 52–82 (2015).
Ievlev, A. V. et al. Non-conventional mechanism of ferroelectric fatigue via cation migration. Nat. Commun. 10, 3064 (2019).
Bian, R. et al. Developing fatigue-resistant ferroelectrics using interlayer sliding switching. Science 385, 57–62 (2024).
Qin, B. et al. Interfacial epitaxy of multilayer rhombohedral transition-metal dichalcogenide single crystals. Science 385, 99–104 (2024).
Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).
Liang, J. et al. Source data for resolving polarization switching pathways of sliding ferroelectricity in trilayer 3R-MoS2. Figshare https://doi.org/10.6084/m9.figshare.28244258.v1 (2025).