Kimble, H. J. The quantum internet. Nature 453, 1023 (2008).
Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165 (2007).
Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. USA 112, 3866 (2015).
Han, X. et al. Microwave-optical quantum frequency conversion. Optica 8, 1050 (2021).
Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).
Awschalom, D. et al. Development of quantum interconnects (QuICs) for next-generation information technologies. PRX Quantum 2, 017002 (2021).
Zeuthen, E., Schliesser, A., Sørensen, A. S. & Taylor, J. M. Figures of merit for quantum transducers. Quantum Sci. Technol. 5, 034009 (2020).
Kumar, A. et al. Quantum-enabled millimetre wave to optical transduction using neutral atoms. Nature 615, 614–619 (2023).
Sahu, R. et al. Quantum-enabled operation of a microwave-optical interface. Nat. Commun. 13, 1276 (2022).
Horsman, D., Fowler, A. G., Devitt, S. & Van Meter, R. Surface code quantum computing by lattice surgery. New J. Phys. 14, 123011 (2012).
Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321 (2014).
Brubaker, B. M. et al. Optomechanical ground-state cooling in a continuous and efficient electro-optic transducer. Phys. Rev. X 12, 021062 (2022).
Sahu, R. et al. Entangling microwaves with light. Science 380, 718 (2023).
Fan, L. et al. Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 4, eaar4994 (2018).
McKenna, T. P. et al. Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer. Optica 7, 1737 (2020).
Holzgrafe, J. et al. Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction. Optica 7, 1714 (2020).
Fu, W. et al. Cavity electro-optic circuit for microwave-to-optical conversion in the quantum ground state. Phys. Rev. A 103, 053504 (2021).
Xu, Y. et al. Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun. 12, 1 (2021).
Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 1 (2020).
Rochman, J., Xie, T., Bartholomew, J. G., Schwab, K. C. & Faraon, A. Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators. Nat. Commun. 14, 1 (2023).
Xie, T., Fukumori, R., Li, J. & Faraon, A. Scalable microwave-to-optical transducers at single photon level with spins. Preprint at https://arxiv.org/abs/2407.08879 (2024).
Zhu, N. et al. Waveguide cavity optomagnonics for microwave-to-optics conversion. Optica 7, 1291 (2020).
Arnold, G. et al. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nat. Commun. 11, 1 (2020).
Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599 (2020).
Jiang, W. et al. Optically heralded microwave photon addition. Nat. Phys. 19, 1423 (2023).
Weaver, M. J. et al. An integrated microwave-to-optics interface for scalable quantum computing. Nat. Nanotechnol. 19, 166 (2024).
Meesala, S. et al. Non-classical microwave-optical photon pair generation with a chip-scale transducer. Nat. Phys. 20, 871–877 (2024).
Meesala, S. et al. Quantum entanglement between optical and microwave photonic qubits. Phys. Rev. X 14, 031055 (2024).
Scigliuzzo, M. et al. Phononic loss in superconducting resonators on piezoelectric substrates. New J. Phys. 22, 053027 (2020).
Meenehan, S. M. et al. Silicon optomechanical crystal resonator at millikelvin temperatures. Phys. Rev. A 90, 011803 (2014).
Bozkurt, A. et al. A quantum electromechanical interface for long-lived phonons. Nat. Phys. 19, 1326 (2023).
MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840 (2020).
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).
Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012).
Zhao, H., Bozkurt, A. & Mirhosseini, M. Electro-optic transduction in silicon via gigahertz-frequency nanomechanics. Optica 10, 790 (2023).
Bretz-Sullivan, T. M. et al. High kinetic inductance NbTiN superconducting transmission line resonators in the very thin film limit. Appl. Phys. Lett. 121, 052602 (2022).
Shearrow, A. et al. Atomic layer deposition of titanium nitride for quantum circuits. Appl. Phys. Lett. 113, 212601 (2018).
Xu, M., Han, X., Fu, W., Zou, C.-L. & Tang, H. X. Frequency-tunable high-Q superconducting resonators via wireless control of nonlinear kinetic inductance. Appl. Phys. Lett. 114, 192601 (2019).
Lobo, R. P. S. M. et al. Photoinduced time-resolved electrodynamics of superconducting metals and alloys. Phys. Rev. B 72, 024510 (2005).
Meenehan, S. M. et al. Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground state of motion. Phys. Rev. X 5, 041002 (2015).
Stockill, R. et al. Gallium phosphide as a piezoelectric platform for quantum optomechanics. Phys. Rev. Lett. 123, 163602 (2019).
Ren, H. et al. Two-dimensional optomechanical crystal cavity with high quantum cooperativity. Nat. Commun. 11, 1 (2020).
Ramp, H. et al. Elimination of thermomechanical noise in piezoelectric optomechanical crystals. Phys. Rev. Lett. 123, 093603 (2019).
Kalaee, M. et al. Quantum electromechanics of a hypersonic crystal. Nat. Nanotechnol. 14, 334 (2019).
Jiang, W. et al. Lithium niobate piezo-optomechanical crystals. Optica 6, 845 (2019).
Forsch, M. et al. Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state. Nat. Phys. 16, 69 (2020).
Joe, G. D. et al. High Q-factor diamond optomechanical resonators with silicon vacancy centers at millikelvin temperatures. Nano Lett. 24, 6831–6837 (2024).
Wang, C.-H., Li, F. & Jiang, L. Quantum capacities of transducers. Nat. Commun. 13, 6698 (2022).
Krastanov, S. et al. Optically heralded entanglement of superconducting systems in quantum networks. Phys. Rev. Lett. 127, 040503 (2021).
Zhong, C., Han, X. & Jiang, L. Microwave and optical entanglement for quantum transduction with electro-optomechanics. Phys. Rev. Appl. 18, 054061 (2022).
Niu, J. et al. Low-loss interconnects for modular superconducting quantum processors. Nat. Electron. 6, 235 (2023).
Kolvik, J., Burger, P., Frey, J. & Laer, R. V. Clamped and sideband-resolved silicon optomechanical crystals. Optica 10, 913 (2023).
Sonar, S. et al. High-efficiency low-noise optomechanical crystal photon-phonon transducers. Optica 12, 99–104 (2025).
Mayor, F. M. et al. A two-dimensional optomechanical crystal for quantum transduction. Preprint at https://arxiv.org/abs/2406.14484 (2024).
Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86 90 (2013).
Zhong, T. et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357, 1392 (2017).
Safavi-Naeini, A. H. Quantum Optomechanics with Silicon Nanostructures. PhD thesis, California Institute of Technology (2013).
Zhao, H., Chen, W. D., Kejriwal, A. & Mirhosseini, M. Data for “Quantum-enabled microwave-to-optical transduction via silicon nanomechanics”. Zenodo https://doi.org/10.5281/zenodo.14743911 (2025).