US Department of Energy. Fuel cells technologies office multi-year research, development, and demonstration plan (2017); https://www.energy.gov/sites/prod/files/2014/12/f19/fcto_myrdd_full_document.pdf
Satyapal, S. Hydrogen and fuel cell program overview (US Department of Energy, 2019); https://www.hydrogen.energy.gov/pdfs/review19/plenary_overview_satyapal_2019.pdf
Cullen, D. A. et al. New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 6, 462–474 (2021).
North American Council for Freight Efficiency. Making sense of heavy-duty hydrogen fuel cell tractors (2020); https://nacfe.org/wp-content/uploads/2020/12/NACFE-Guidance-on-Hydrogen-Fuel-Cell-Tractors-FINAL-121620.pdf
US Department of Energy. Average annual vehicle miles traveled by major vehicle category (2020); https://afdc.energy.gov/data/10309
US Environmental Protection Agency. Fast facts on transportation greenhouse gas emissions (2019); https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions
Davis, S. C. & Boundy. R. G. Transportation Energy Data Book: Edition 40 (Oak Ridge National Laboratory, 2020).
Marcinkoski, J. et al. Hydrogen Class 8 long haul truck targets (US Department of Energy, 2019); https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/19006_hydrogen_class8_long_haul_truck_targets.pdf?Status=Master
Eudy, L. & Post, M. Fuel Cell Buses In U.S. Transit Fleets: Current Status 2020 Report No. NREL/TP-5400-75583 (National Renewable Energy Laboratory, 2021).
James, B., Huya-Kouadio, J., Houchins, C. & Desantis, D. Final SA 2018 transportation fuel cell cost analysis—2020-01-23 (2018); https://www.energy.gov/sites/prod/files/2020/02/f71/fcto-sa-2018-transportation-fuel-cell-cost-analysis-2.pdf
Hua, T. et al. Status of hydrogen fuel cell electric buses worldwide. J. Power Sources 269, 975–993 (2014).
Kodama, K., Nagai, T., Kuwaki, A., Jinnouchi, R. & Morimoto, Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat. Nanotechnol. 16, 140–147 (2021).
Kurtz, J., Sprik, S., Saur, G. & Onorato, S. Fuel Cell Electric Vehicle Durability and Fuel Cell Performance Report No. NREL/TP-5400-73011 (National Renewable Energy Laboratory, 2019).
Lohse-Busch, H. et al. Automotive fuel cell stack and system efficiency and fuel consumption based on vehicle testing on a chassis dynamometer at minus 18 °C to positive 35 °C temperatures. Int. J. Hydrogen Energy 45, 861–872 (2020).
Li, M. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016).
Escudero-Escribano, M. et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016).
Zhang, L. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349, 412–416 (2015).
Li, W., Chen, Z., Xu, L. & Yan, Y. A solution-phase synthesis method to highly active Pt-Co/C electrocatalysts for proton exchange membrane fuel cell. J. Power Sources 195, 2534–2540 (2010).
Wang, X. X. et al. Ordered Pt3Co intermetallic nanoparticles derived from metal–organic frameworks for oxygen reduction. Nano Lett. 18, 4163–4171 (2018).
He, D. S. et al. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 138, 1494–1497 (2016).
Chung, D. Y. et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 137, 15478–15485 (2015).
Han, B. et al. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ. Sci. 8, 258–266 (2015).
Qiao, Z. et al. Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements. Energy Environ. Sci. 14, 4948–4960 (2021).
Yang, C.-L. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 374, 459–464 (2021).
Li, J. et al. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule 3, 124–135 (2019).
Song, T.-W. et al. Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts. Nat. Commun. 13, 6521 (2022).
Gao, C., Lyu, F. & Yin, Y. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 121, 834–881 (2021).
Zhao, Z. et al. Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions. Nat. Nanotechnol. 17, 968–975 (2022).
Ji, S. G., Kwon, H. C., Kim, T.-H., Sim, U. & Choi, C. H. Does the encapsulation strategy of Pt nanoparticles with carbon layers really ensure both highly active and durable electrocatalysis in fuel cells? ACS Catal. 12, 7317–7325 (2022).
Tang, H. et al. Low Pt loading for high-performance fuel cell electrodes enabled by hydrogen-bonding microporous polymer binders. Nat. Commun. 13, 7577 (2022).
Chen, M. et al. High-platinum-content catalysts on atomically dispersed and nitrogen coordinated single manganese site carbons for heavy-duty fuel cells. J. Electrochem. Soc. 169, 034510 (2022).
Ko, M., Padgett, E., Yarlagadda, V., Kongkanand, A. & Muller, D. A. Revealing the nanostructure of mesoporous fuel cell catalyst supports for durable, high-power performance. J. Electrochem. Soc. 168, 024512 (2021).
US Department of Energy. M2FCT: Million Mile Fuel Cell Truck Consortium FC339, (2021); https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/review21/fc339_weber_2021_o-pdf.pdf
Wang, X., Hu, L., Neyerlin, K. C. & Ahluwalia, R. K. Baselining activity and stability of ORR catalysts and electrodes for proton exchange membrane fuel cells for heavy-duty applications. J. Electrochem. Soc. 170, 024503 (2023).
Zeng, Y. et al. Regulating catalytic properties and thermal stability of Pt and PtCo intermetallic fuel-cell catalysts via strong coupling effects between single-metal site-rich carbon and Pt. J. Am. Chem. Soc. 145, 17643–17655 (2023).
Liang, J. et al. Metal bond strength regulation enables large-scale synthesis of intermetallic nanocrystals for practical fuel cells. Nat. Mater. 23, 1259–1267 (2024).
Stariha, S. et al. Recent advances in catalyst accelerated stress tests for polymer electrolyte membrane fuel cells. J. Electrochem. Soc. 165, F492–F501 (2018).
Kongkanand, A. & Mathias, M. F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 7, 1127–1137 (2016).
Barbir, F. in PEM Fuel Cells (ed. Barbir, F.) 33–72 (Academic Press, 2005).
Harrison, K. W., Hoskin, R. R. A. & Martin, G. D. Hydrogen production: fundamentals and case study summaries (National Renewable Energy Laboratory, 2010); https://www.nrel.gov/docs/fy10osti/47302.pdf
Jang, J. et al. Boosting fuel cell durability under shut-down/start-up conditions using a hydrogen oxidation-selective metal–carbon hybrid core–shell catalyst. ACS Appl. Mater. Interfaces 11, 27735–27742 (2019).
Granqvist, C. G. & Buhrman, R. A. Size distributions for supported metal catalysts: coalescence growth versus Ostwald ripening. J. Catal. 42, 477–479 (1976).
Borup, R. L. & Weber, A. Z. FC-PAD: Fuel Cell Performance And Durability Consortium Report No. LA-UR-19-22970 (2018).
Padgett, E. et al. Editors’ choice—connecting fuel cell catalyst nanostructure and accessibility using quantitative cryo-STEM tomography. J. Electrochem. Soc. 165, F173–F180 (2018).
Peng, B. et al. Embedded oxide clusters stabilize sub-2 nm Pt nanoparticles for highly durable fuel cells. Nat. Catal. 7, 818–828 (2024).
Garrick, T. R., Moylan, T. E., Yarlagadda, V. & Kongkanand, A. Characterizing electrolyte and platinum interface in PEM fuel cells using Co displacement. J. Electrochem. Soc. 164, F60 (2017).
Yamada, H., Kato, H. & Kodama, K. Cell performance and durability of Pt/C cathode catalyst covered by dopamine derived carbon thin layer for polymer electrolyte fuel cells. J. Electrochem. Soc. 167, 084508 (2020).
Lin, L.-C., Cheng, Y.-S., Liao, W.-C., Huang, Y.-H. & Pan, Y.-T. Transient loss and recovery of platinum fuel cell cathode catalyst at high voltage efficiency regimes. J. Electrochem. Soc. 168, 054503 (2021).
Garrick, T. R., Moylan, T. E., Carpenter, M. K. & Kongkanand, A. Editors’ choice—electrochemically active surface area measurement of aged Pt alloy catalysts in PEM fuel cells by Co stripping. J. Electrochem. Soc. 164, F55 (2017).