terça-feira, abril 1, 2025
HomeNanotechnologyPt catalyst protected by graphene nanopockets enables lifetimes of over 200,000 h for...

Pt catalyst protected by graphene nanopockets enables lifetimes of over 200,000 h for heavy-duty fuel cell applications


  • US Department of Energy. Fuel cells technologies office multi-year research, development, and demonstration plan (2017); https://www.energy.gov/sites/prod/files/2014/12/f19/fcto_myrdd_full_document.pdf

  • Satyapal, S. Hydrogen and fuel cell program overview (US Department of Energy, 2019); https://www.hydrogen.energy.gov/pdfs/review19/plenary_overview_satyapal_2019.pdf

  • Cullen, D. A. et al. New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 6, 462–474 (2021).

    Article 
    CAS 

    Google Scholar
     

  • North American Council for Freight Efficiency. Making sense of heavy-duty hydrogen fuel cell tractors (2020); https://nacfe.org/wp-content/uploads/2020/12/NACFE-Guidance-on-Hydrogen-Fuel-Cell-Tractors-FINAL-121620.pdf

  • US Department of Energy. Average annual vehicle miles traveled by major vehicle category (2020); https://afdc.energy.gov/data/10309

  • US Environmental Protection Agency. Fast facts on transportation greenhouse gas emissions (2019); https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions

  • Davis, S. C. & Boundy. R. G. Transportation Energy Data Book: Edition 40 (Oak Ridge National Laboratory, 2020).

  • Marcinkoski, J. et al. Hydrogen Class 8 long haul truck targets (US Department of Energy, 2019); https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/19006_hydrogen_class8_long_haul_truck_targets.pdf?Status=Master

  • Eudy, L. & Post, M. Fuel Cell Buses In U.S. Transit Fleets: Current Status 2020 Report No. NREL/TP-5400-75583 (National Renewable Energy Laboratory, 2021).

  • James, B., Huya-Kouadio, J., Houchins, C. & Desantis, D. Final SA 2018 transportation fuel cell cost analysis—2020-01-23 (2018); https://www.energy.gov/sites/prod/files/2020/02/f71/fcto-sa-2018-transportation-fuel-cell-cost-analysis-2.pdf

  • Hua, T. et al. Status of hydrogen fuel cell electric buses worldwide. J. Power Sources 269, 975–993 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kodama, K., Nagai, T., Kuwaki, A., Jinnouchi, R. & Morimoto, Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat. Nanotechnol. 16, 140–147 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurtz, J., Sprik, S., Saur, G. & Onorato, S. Fuel Cell Electric Vehicle Durability and Fuel Cell Performance Report No. NREL/TP-5400-73011 (National Renewable Energy Laboratory, 2019).

  • Lohse-Busch, H. et al. Automotive fuel cell stack and system efficiency and fuel consumption based on vehicle testing on a chassis dynamometer at minus 18 °C to positive 35 °C temperatures. Int. J. Hydrogen Energy 45, 861–872 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Escudero-Escribano, M. et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349, 412–416 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W., Chen, Z., Xu, L. & Yan, Y. A solution-phase synthesis method to highly active Pt-Co/C electrocatalysts for proton exchange membrane fuel cell. J. Power Sources 195, 2534–2540 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. X. et al. Ordered Pt3Co intermetallic nanoparticles derived from metal–organic frameworks for oxygen reduction. Nano Lett. 18, 4163–4171 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, D. S. et al. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 138, 1494–1497 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung, D. Y. et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 137, 15478–15485 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, B. et al. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ. Sci. 8, 258–266 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Qiao, Z. et al. Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements. Energy Environ. Sci. 14, 4948–4960 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C.-L. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 374, 459–464 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule 3, 124–135 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Song, T.-W. et al. Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts. Nat. Commun. 13, 6521 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, C., Lyu, F. & Yin, Y. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 121, 834–881 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Z. et al. Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions. Nat. Nanotechnol. 17, 968–975 (2022).

  • Ji, S. G., Kwon, H. C., Kim, T.-H., Sim, U. & Choi, C. H. Does the encapsulation strategy of Pt nanoparticles with carbon layers really ensure both highly active and durable electrocatalysis in fuel cells? ACS Catal. 12, 7317–7325 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tang, H. et al. Low Pt loading for high-performance fuel cell electrodes enabled by hydrogen-bonding microporous polymer binders. Nat. Commun. 13, 7577 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, M. et al. High-platinum-content catalysts on atomically dispersed and nitrogen coordinated single manganese site carbons for heavy-duty fuel cells. J. Electrochem. Soc. 169, 034510 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ko, M., Padgett, E., Yarlagadda, V., Kongkanand, A. & Muller, D. A. Revealing the nanostructure of mesoporous fuel cell catalyst supports for durable, high-power performance. J. Electrochem. Soc. 168, 024512 (2021).

    Article 
    CAS 

    Google Scholar
     

  • US Department of Energy. M2FCT: Million Mile Fuel Cell Truck Consortium FC339, (2021); https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/review21/fc339_weber_2021_o-pdf.pdf

  • Wang, X., Hu, L., Neyerlin, K. C. & Ahluwalia, R. K. Baselining activity and stability of ORR catalysts and electrodes for proton exchange membrane fuel cells for heavy-duty applications. J. Electrochem. Soc. 170, 024503 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, Y. et al. Regulating catalytic properties and thermal stability of Pt and PtCo intermetallic fuel-cell catalysts via strong coupling effects between single-metal site-rich carbon and Pt. J. Am. Chem. Soc. 145, 17643–17655 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, J. et al. Metal bond strength regulation enables large-scale synthesis of intermetallic nanocrystals for practical fuel cells. Nat. Mater. 23, 1259–1267 (2024).

  • Stariha, S. et al. Recent advances in catalyst accelerated stress tests for polymer electrolyte membrane fuel cells. J. Electrochem. Soc. 165, F492–F501 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kongkanand, A. & Mathias, M. F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 7, 1127–1137 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barbir, F. in PEM Fuel Cells (ed. Barbir, F.) 33–72 (Academic Press, 2005).

  • Harrison, K. W., Hoskin, R. R. A. & Martin, G. D. Hydrogen production: fundamentals and case study summaries (National Renewable Energy Laboratory, 2010); https://www.nrel.gov/docs/fy10osti/47302.pdf

  • Jang, J. et al. Boosting fuel cell durability under shut-down/start-up conditions using a hydrogen oxidation-selective metal–carbon hybrid core–shell catalyst. ACS Appl. Mater. Interfaces 11, 27735–27742 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Granqvist, C. G. & Buhrman, R. A. Size distributions for supported metal catalysts: coalescence growth versus Ostwald ripening. J. Catal. 42, 477–479 (1976).

    Article 
    CAS 

    Google Scholar
     

  • Borup, R. L. & Weber, A. Z. FC-PAD: Fuel Cell Performance And Durability Consortium Report No. LA-UR-19-22970 (2018).

  • Padgett, E. et al. Editors’ choice—connecting fuel cell catalyst nanostructure and accessibility using quantitative cryo-STEM tomography. J. Electrochem. Soc. 165, F173–F180 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Peng, B. et al. Embedded oxide clusters stabilize sub-2 nm Pt nanoparticles for highly durable fuel cells. Nat. Catal. 7, 818–828 (2024).

  • Garrick, T. R., Moylan, T. E., Yarlagadda, V. & Kongkanand, A. Characterizing electrolyte and platinum interface in PEM fuel cells using Co displacement. J. Electrochem. Soc. 164, F60 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yamada, H., Kato, H. & Kodama, K. Cell performance and durability of Pt/C cathode catalyst covered by dopamine derived carbon thin layer for polymer electrolyte fuel cells. J. Electrochem. Soc. 167, 084508 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lin, L.-C., Cheng, Y.-S., Liao, W.-C., Huang, Y.-H. & Pan, Y.-T. Transient loss and recovery of platinum fuel cell cathode catalyst at high voltage efficiency regimes. J. Electrochem. Soc. 168, 054503 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Garrick, T. R., Moylan, T. E., Carpenter, M. K. & Kongkanand, A. Editors’ choice—electrochemically active surface area measurement of aged Pt alloy catalysts in PEM fuel cells by Co stripping. J. Electrochem. Soc. 164, F55 (2017).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments