domingo, janeiro 19, 2025
HomeNanotechnologyPolydopamine(PDA)-coated diselenide-bridged mesoporous silica-based nanoplatform for neuroprotection by reducing oxidative stress and...

Polydopamine(PDA)-coated diselenide-bridged mesoporous silica-based nanoplatform for neuroprotection by reducing oxidative stress and targeting neuroinflammation in intracerebral hemorrhage | Journal of Nanobiotechnology


  • Magid-Bernstein J, Girard R, Polster S, Srinath A, Romanos S, Awad IA, Sansing LH. Cerebral hemorrhage: pathophysiology, treatment, and future directions. Circ Res. 2022;130:1204–29. https://doi.org/10.1161/CIRCRESAHA.121.319949.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11:720–31. https://doi.org/10.1016/S1474-4422(12)70104-7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bautista W, Adelson PD, Bicher N, Themistocleous M, Tsivgoulis G, Chang JJ. Secondary mechanisms of injury and viable pathophysiological targets in intracerebral hemorrhage. Ther Adv Neurol Disord. 2021;14:17562864211049208. https://doi.org/10.1177/17562864211049208.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sondag L, Schreuder F, Boogaarts HD, Rovers MM, Vandertop WP, Dammers R, Klijn CJM. Neurosurgical intervention for supratentorial intracerebral hemorrhage. Ann Neurol. 2020;88:239–50. https://doi.org/10.1002/ana.25732.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanley DF, Thompson RE, Rosenblum M, Yenokyan G, Lane K, McBee N, Mayo SW, Bistran-Hall AJ, Gandhi D, Mould WA, et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet. 2019;393:1021–32. https://doi.org/10.1016/S0140-6736(19)30195-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puy L, Parry-Jones AR, Sandset EC, Dowlatshahi D, Ziai W, Cordonnier C. Intracerebral haemorrhage. Nat Rev Dis Primers. 2023;9:15. https://doi.org/10.1038/s41572-023-00424-7.

    Article 

    Google Scholar
     

  • Cordonnier C, Demchuk A, Ziai W, Anderson CS. Intracerebral haemorrhage: current approaches to acute management. Lancet. 2018;392:1257–68. https://doi.org/10.1016/S0140-6736(18)31878-6.

    Article 
    PubMed 

    Google Scholar
     

  • Urday S, Kimberly WT, Beslow LA, Vortmeyer AO, Selim MH, Rosand J, Simard JM, Sheth KN. Targeting secondary injury in intracerebral haemorrhage-perihaematomal oedema. Nat Rev Neurol. 2015;11:111–22. https://doi.org/10.1038/nrneurol.2014.264.

    Article 
    PubMed 

    Google Scholar
     

  • Li Q, Wan J, Lan X, Han X, Wang Z, Wang J. Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice. J Cereb Blood Flow Metab. 2017;37:3110–23. https://doi.org/10.1177/0271678X17709186.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kearns KN, Ironside N, Park MS, Worrall BB, Southerland AM, Chen CJ, Ding D. Neuroprotective therapies for spontaneous intracerebral hemorrhage. Neurocrit Care. 2021;35:862–86. https://doi.org/10.1007/s12028-021-01311-3.

    Article 
    PubMed 

    Google Scholar
     

  • Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, et al. Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr Neurol Neurosci Rep. 2023;23:407–31. https://doi.org/10.1007/s11910-023-01282-2.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gao L, Shi H, Sherchan P, Tang H, Peng L, Xie S, Liu R, Hu X, Tang J, Xia Y, Zhang JH. Inhibition of lysophosphatidic acid receptor 1 attenuates neuroinflammation via PGE2/EP2/NOX2 signalling and improves the outcome of intracerebral haemorrhage in mice. Brain Behav Immun. 2021;91:615–26. https://doi.org/10.1016/j.bbi.2020.09.032.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao X, Ting SM, Liu CH, Sun G, Kruzel M, Roy-eilly M, Aronowski J. Neutrophil polarization by IL-27 as a therapeutic target for intracerebral hemorrhage. Nat Commun. 2017;8:602. https://doi.org/10.1038/s41467-017-00770-7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J. Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol. 2017;54:1874–86. https://doi.org/10.1007/s12035-016-9785-6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shao F, Wang X, Wu H, Wu Q, Zhang J. Microglia and neuroinflammation: crucial pathological mechanisms in traumatic braininjury-induced neurodegeneration. Front Aging Neurosci. 2022;14: 825086. https://doi.org/10.3389/fnagi.2022.825086.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen HS, Chen X, Li WT, Shen JG. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery. Acta Pharmacol Sin. 2018;39:669–82. https://doi.org/10.1038/aps.2018.27.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015;6:524–51. https://doi.org/10.1016/j.redox.2015.08.020.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20:689–709. https://doi.org/10.1038/s41573-021-00233-1.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pérez R, Burgos V, Marín V, Camins A, Olloquequi J, González-Chavarría I, Ulrich H, Wyneke U, Luarte A, Ortiz L, Paz C. Caffeic acid phenethyl ester (CAPE): biosynthesis, derivatives and formulations with neuroprotective activities. Antioxidants (Basel). 2023;12:1500. https://doi.org/10.3390/antiox12081500.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Serarslan G, Altuğ E, Kontas T, Atik E, Avci G. Caffeic acid phenethyl ester accelerates cutaneous wound healing in a rat model and decreases oxidative stress. Clin Exp Dermatol. 2007;32:709–15. https://doi.org/10.1111/j.1365-2230.2007.02470.x.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pittalà V, Salerno L, Romeo G, Acquaviva R, Di Giacomo C, Sorrenti V. Therapeutic potential of caffeic acid phenethyl ester (CAPE) in diabetes. Curr Med Chem. 2018;25:4827–36. https://doi.org/10.2174/0929867324666161118120908.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin MW, Yang SR, Huang MH, Wu SN. Stimulatory actions of caffeic acid phenethyl ester, a known inhibitor of NF-kappaB activation, on Ca2+-activated K+ current in pituitary GH3 cells. J Biol Chem. 2004;279:26885–92. https://doi.org/10.1074/jbc.M400356200.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tolba MF, Omar HA, Azab SS, Khalifa AE, Abdel-Naim AB, Abdel-Rahman SZ. Caffeic acid phenethyl ester: a review of its antioxidant activity, protective effects against ischemia-reperfusion injury and drug adverse reactions. Crit Rev Food Sci Nutr. 2016;56:2183–90. https://doi.org/10.1080/10408398.2013.821967.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Balaha M, De Filippis B, Cataldi A, di Giacomo V. CAPE and neuroprotection: a review. Biomolecules. 2021;11:176. https://doi.org/10.3390/biom11020176.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee HY, Jeong YI, Kim EJ, Lee KD, Choi SH, Kim YJ, Kim DH, Choi KC. Preparation of caffeic acid phenethyl ester-incorporated nanoparticles and their biological activity. J Pharm Sci. 2015;104:144–54. https://doi.org/10.1002/jps.24278.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Weng YC, Chuang ST, Lin YC, Chuang CF, Chi TC, Chiu HL, Kuo YH, Su MJ. Caffeic acid phenylethyl amide protects against the metabolic consequences in diabetes mellitus induced by diet and streptozocin. Evid Based Complement Alternat Med. 2012;2012: 984780. https://doi.org/10.1155/2012/984780.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armutcu F, Akyol S, Ustunsoy S, Turan FF. Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects (review). Exp Ther Med. 2015;9:1582–8. https://doi.org/10.3892/etm.2015.2346.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Afzal O, Altamimi ASA, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. Nanoparticles in drug delivery: from history to therapeutic applications. Nanomaterials (Basel). 2022;12:4494. https://doi.org/10.3390/nano12244494.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules. 2019;25:112. https://doi.org/10.3390/molecules25010112.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Malik S, Muhammad K, Waheed Y. Nanotechnology: a revolution in modern industry. Molecules. 2023;28:661. https://doi.org/10.3390/molecules28020661.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cha BG, Kim J. Functional mesoporous silica nanoparticles for bio-imaging applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11: e1515. https://doi.org/10.1002/wnan.1515.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10:118. https://doi.org/10.3390/pharmaceutics10030118.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Noureddine A, Maestas-Olguin A, Tang L, Corman-Hijar JI, Olewine M, Krawchuck JA, Tsala Ebode J, Edeh C, Dang C, Negrete OA, et al. Future of mesoporous silica nanoparticles in nanomedicine: protocol for reproducible synthesis, characterization, lipid coating, and loading of therapeutics (chemotherapeutic, proteins, siRNA and mRNA). ACS Nano. 2023;17:16308–25. https://doi.org/10.1021/acsnano.3c07621.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Duan F, Feng X, Jin Y, Liu D, Yang X, Zhou G, Liu D, Li Z, Liang XJ, Zhang J. Metal-carbenicillin framework-based nanoantibiotics with enhanced penetration and highly efficient inhibition of MRSA. Biomaterials. 2017;144:155–65. https://doi.org/10.1016/j.biomaterials.2017.08.024.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu XC, Wu CZ, Hu XF, Wang TL, Jin XP, Ke SF, Wang E, Wu G. Gastrodin attenuates neuronal apoptosis and neurological deficits after experimental intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2020;29: 104483. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104483.

    Article 
    PubMed 

    Google Scholar
     

  • Qu J, Chen W, Hu R, Feng H. The injury and therapy of reactive oxygen species in intracerebral hemorrhage looking at mitochondria. Oxid Med Cell Longev. 2016;2016:2592935. https://doi.org/10.1155/2016/2592935.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang M, Sun X, Wang Y, Deng X, Miao J, Zhao D, Sun K, Li M, Wang X, Sun W, Qin J. Construction of selenium nanoparticle-loaded mesoporous silica nanoparticles with potential antioxidant and antitumor activities as a selenium supplement. ACS Omega. 2022;7:44851–60. https://doi.org/10.1021/acsomega.2c04975.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yuan X, Jia Z, Li J, Liu Y, Huang Y, Gong Y, Guo X, Chen X, Cen J, Liu J. A diselenide bond-containing ROS-responsive ruthenium nanoplatform delivers nerve growth factor for Alzheimer’s disease management by repairing and promoting neuron regeneration. J Mater Chem B. 2021;9:7835–47. https://doi.org/10.1039/d1tb01290h.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhu R, He Q, Li Z, Ren Y, Liao Y, Zhang Z, Dai Q, Wan C, Long S, Kong L, et al. ROS-cleavable diselenide nanomedicine for NIR-controlled drug release and on-demand synergistic chemo-photodynamic therapy. Acta Biomater. 2022;153:442–52. https://doi.org/10.1016/j.actbio.2022.09.061.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shen Z, Wen H, Zhou H, Hao L, Chen H, Zhou X. Coordination bonding-based polydopamine-modified mesoporous silica for sustained avermectin release. Mater Sci Eng C Mater Biol Appl. 2019;105: 110073. https://doi.org/10.1016/j.msec.2019.110073.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao H, Chao Y, Liu J, Huang J, Pan J, Guo W, Wu J, Sheng M, Yang K, Wang J, Liu Z. Polydopamine coated single-walled carbon nanotubes as a versatile platform with radionuclide labeling for multimodal tumor imaging and therapy. Theranostics. 2016;6:1833–43. https://doi.org/10.7150/thno.16047.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano. 2019;13:8537–65. https://doi.org/10.1021/acsnano.9b04436.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zeng X, Luo M, Liu G, Wang X, Tao W, Lin Y, Ji X, Nie L, Mei L. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Adv Sci (Weinh). 2018;5:1800510. https://doi.org/10.1002/advs.201800510.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: working as “drug” carriers. Bioact Mater. 2020;5:522–41. https://doi.org/10.1016/j.bioactmat.2020.04.003.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang B, Wang K, Zhang D, Ji B, Zhao D, Wang X, Zhang H, Kan Q, He Z, Sun J. Polydopamine-modified ROS-responsive prodrug nanoplatform with enhanced stability for precise treatment of breast cancer. RSC Adv. 2019;9:9260–9. https://doi.org/10.1039/c9ra01230c.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu H, Wei M, Xu Y, Li Y, Zhai X, Su P, Ma Q, Zhang H. PDA-based drug delivery nanosystems: a potential approach for glioma treatment. Int J Nanomed. 2022;17:3751–75. https://doi.org/10.2147/IJN.S378217.

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Yang J, Chen X, Hu H, Lan N, Zhao J, Zheng L. Mitochondrial-targeting and NIR-responsive Mn(3)O(4)@PDA@Pd-SS31 nanozymes reduce oxidative stress and reverse mitochondrial dysfunction to alleviate osteoarthritis. Biomaterials. 2024;305: 122449. https://doi.org/10.1016/j.biomaterials.2023.122449.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang J, Zhou Y, Jiang Z, He C, Wang B, Wang Q, Wang Z, Wu T, Chen X, Deng Z, et al. Bioinspired polydopamine nanoparticles as efficient antioxidative and anti-inflammatory enhancers against UV-induced skin damage. J Nanobiotechnology. 2023;21:354. https://doi.org/10.1186/s12951-023-02107-7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhu TT, Wang H, Gu HW, Ju LS, Wu XM, Pan WT, Zhao MM, Yang JJ, Liu PM. Melanin-like polydopamine nanoparticles mediating anti-inflammatory and rescuing synaptic loss for inflammatory depression therapy. J Nanobiotechnology. 2023;21:52. https://doi.org/10.1186/s12951-023-01807-4.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dai S, Wei J, Zhang H, Luo P, Yang Y, Jiang X, Fei Z, Liang W, Jiang J, Li X. Intermittent fasting reduces neuroinflammation in intracerebral hemorrhage through the Sirt3/Nrf2/HO-1 pathway. J Neuroinflammation. 2022;19:122. https://doi.org/10.1186/s12974-022-02474-2.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kastvig MH, Bøtker JP, Ge G, Andersen ML. Measurement of hydrogen peroxide vapor in powders with potassium titanium oxide oxalate loaded cellulose pellets as probes. MethodsX. 2021;8: 101405. https://doi.org/10.1016/j.mex.2021.101405.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol. 2017;13:420–33.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92:463–77. https://doi.org/10.1038/nrneurol.2017.69.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xiong XY, Liu L, Yang QW. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol. 2016;142:23–44. https://doi.org/10.1016/j.pneurobio.2016.05.001.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang X, Xu S, Qian Y, Xiao Q. Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury. Brain Behav Immun. 2017;64:162–72. https://doi.org/10.1016/j.bbi.2017.03.003.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang G, Fan X, Mazhar M, Guo W, Zou Y, Dechsupa N, Wang L. Neuroinflammation of microglia polarization in intracerebral hemorrhage and its potential targets for intervention. Front Mol Neurosci. 2022;15:1013706. https://doi.org/10.3389/fnmol.2022.1013706.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Han R, Lan X, Han Z, Ren H, Aafreen S, Wang W, Hou Z, Zhu T, Qian A, Han X, et al. Improving outcomes in intracerebral hemorrhage through microglia/macrophage-targeted IL-10 delivery with phosphatidylserine liposomes. Biomaterials. 2023;301: 122277. https://doi.org/10.1016/j.biomaterials.2023.12227.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zha S, Liu H, Li H, Li H, Wong KL, All AH. Functionalized nanomaterials capable of crossing the blood-brain barrier. ACS Nano. 2024;18:1820–45. https://doi.org/10.1021/acsnano.3c10674.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yuan J, Li L, Yang Q, Ran H, Wang J, Hu K, Pu W, Huang J, Wen L, Zhou L, et al. Targeted treatment of ischemic stroke by bioactive nanoparticle-derived eactive oxygen species responsive and inflammation-resolving nanotherapies. ACS Nano. 2021;15:16076–94. https://doi.org/10.1021/acsnano.1c04753.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ding S, Khan AI, Cai X, Song Y, Lyu Z, Du D, Dutta P, Lin Y. Overcoming blood-brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater Today (Kidlington). 2020;37:112–25. https://doi.org/10.1016/j.mattod.2020.02.001.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Keep RF, Andjelkovic AV, Xiang J, Stamatovic SM, Antonetti DA, Hua Y, Xi G. Brain endothelial cell junctions after cerebral hemorrhage: changes, mechanisms and therapeutic targets. J Cereb Blood Flow Metab. 2018;38:1255–75. https://doi.org/10.1177/0271678X18774666.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shi Y, van der Meel R, Chen X, Lammers T. The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics. 2020;10:7921–4. https://doi.org/10.7150/thno.49577.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES
    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments