Magid-Bernstein J, Girard R, Polster S, Srinath A, Romanos S, Awad IA, Sansing LH. Cerebral hemorrhage: pathophysiology, treatment, and future directions. Circ Res. 2022;130:1204–29. https://doi.org/10.1161/CIRCRESAHA.121.319949.
Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11:720–31. https://doi.org/10.1016/S1474-4422(12)70104-7.
Bautista W, Adelson PD, Bicher N, Themistocleous M, Tsivgoulis G, Chang JJ. Secondary mechanisms of injury and viable pathophysiological targets in intracerebral hemorrhage. Ther Adv Neurol Disord. 2021;14:17562864211049208. https://doi.org/10.1177/17562864211049208.
Sondag L, Schreuder F, Boogaarts HD, Rovers MM, Vandertop WP, Dammers R, Klijn CJM. Neurosurgical intervention for supratentorial intracerebral hemorrhage. Ann Neurol. 2020;88:239–50. https://doi.org/10.1002/ana.25732.
Hanley DF, Thompson RE, Rosenblum M, Yenokyan G, Lane K, McBee N, Mayo SW, Bistran-Hall AJ, Gandhi D, Mould WA, et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet. 2019;393:1021–32. https://doi.org/10.1016/S0140-6736(19)30195-3.
Puy L, Parry-Jones AR, Sandset EC, Dowlatshahi D, Ziai W, Cordonnier C. Intracerebral haemorrhage. Nat Rev Dis Primers. 2023;9:15. https://doi.org/10.1038/s41572-023-00424-7.
Cordonnier C, Demchuk A, Ziai W, Anderson CS. Intracerebral haemorrhage: current approaches to acute management. Lancet. 2018;392:1257–68. https://doi.org/10.1016/S0140-6736(18)31878-6.
Urday S, Kimberly WT, Beslow LA, Vortmeyer AO, Selim MH, Rosand J, Simard JM, Sheth KN. Targeting secondary injury in intracerebral haemorrhage-perihaematomal oedema. Nat Rev Neurol. 2015;11:111–22. https://doi.org/10.1038/nrneurol.2014.264.
Li Q, Wan J, Lan X, Han X, Wang Z, Wang J. Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice. J Cereb Blood Flow Metab. 2017;37:3110–23. https://doi.org/10.1177/0271678X17709186.
Kearns KN, Ironside N, Park MS, Worrall BB, Southerland AM, Chen CJ, Ding D. Neuroprotective therapies for spontaneous intracerebral hemorrhage. Neurocrit Care. 2021;35:862–86. https://doi.org/10.1007/s12028-021-01311-3.
Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, et al. Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr Neurol Neurosci Rep. 2023;23:407–31. https://doi.org/10.1007/s11910-023-01282-2.
Gao L, Shi H, Sherchan P, Tang H, Peng L, Xie S, Liu R, Hu X, Tang J, Xia Y, Zhang JH. Inhibition of lysophosphatidic acid receptor 1 attenuates neuroinflammation via PGE2/EP2/NOX2 signalling and improves the outcome of intracerebral haemorrhage in mice. Brain Behav Immun. 2021;91:615–26. https://doi.org/10.1016/j.bbi.2020.09.032.
Zhao X, Ting SM, Liu CH, Sun G, Kruzel M, Roy-eilly M, Aronowski J. Neutrophil polarization by IL-27 as a therapeutic target for intracerebral hemorrhage. Nat Commun. 2017;8:602. https://doi.org/10.1038/s41467-017-00770-7.
Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J. Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol. 2017;54:1874–86. https://doi.org/10.1007/s12035-016-9785-6.
Shao F, Wang X, Wu H, Wu Q, Zhang J. Microglia and neuroinflammation: crucial pathological mechanisms in traumatic braininjury-induced neurodegeneration. Front Aging Neurosci. 2022;14: 825086. https://doi.org/10.3389/fnagi.2022.825086.
Chen HS, Chen X, Li WT, Shen JG. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery. Acta Pharmacol Sin. 2018;39:669–82. https://doi.org/10.1038/aps.2018.27.
Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015;6:524–51. https://doi.org/10.1016/j.redox.2015.08.020.
Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20:689–709. https://doi.org/10.1038/s41573-021-00233-1.
Pérez R, Burgos V, Marín V, Camins A, Olloquequi J, González-Chavarría I, Ulrich H, Wyneke U, Luarte A, Ortiz L, Paz C. Caffeic acid phenethyl ester (CAPE): biosynthesis, derivatives and formulations with neuroprotective activities. Antioxidants (Basel). 2023;12:1500. https://doi.org/10.3390/antiox12081500.
Serarslan G, Altuğ E, Kontas T, Atik E, Avci G. Caffeic acid phenethyl ester accelerates cutaneous wound healing in a rat model and decreases oxidative stress. Clin Exp Dermatol. 2007;32:709–15. https://doi.org/10.1111/j.1365-2230.2007.02470.x.
Pittalà V, Salerno L, Romeo G, Acquaviva R, Di Giacomo C, Sorrenti V. Therapeutic potential of caffeic acid phenethyl ester (CAPE) in diabetes. Curr Med Chem. 2018;25:4827–36. https://doi.org/10.2174/0929867324666161118120908.
Lin MW, Yang SR, Huang MH, Wu SN. Stimulatory actions of caffeic acid phenethyl ester, a known inhibitor of NF-kappaB activation, on Ca2+-activated K+ current in pituitary GH3 cells. J Biol Chem. 2004;279:26885–92. https://doi.org/10.1074/jbc.M400356200.
Tolba MF, Omar HA, Azab SS, Khalifa AE, Abdel-Naim AB, Abdel-Rahman SZ. Caffeic acid phenethyl ester: a review of its antioxidant activity, protective effects against ischemia-reperfusion injury and drug adverse reactions. Crit Rev Food Sci Nutr. 2016;56:2183–90. https://doi.org/10.1080/10408398.2013.821967.
Balaha M, De Filippis B, Cataldi A, di Giacomo V. CAPE and neuroprotection: a review. Biomolecules. 2021;11:176. https://doi.org/10.3390/biom11020176.
Lee HY, Jeong YI, Kim EJ, Lee KD, Choi SH, Kim YJ, Kim DH, Choi KC. Preparation of caffeic acid phenethyl ester-incorporated nanoparticles and their biological activity. J Pharm Sci. 2015;104:144–54. https://doi.org/10.1002/jps.24278.
Weng YC, Chuang ST, Lin YC, Chuang CF, Chi TC, Chiu HL, Kuo YH, Su MJ. Caffeic acid phenylethyl amide protects against the metabolic consequences in diabetes mellitus induced by diet and streptozocin. Evid Based Complement Alternat Med. 2012;2012: 984780. https://doi.org/10.1155/2012/984780.
Armutcu F, Akyol S, Ustunsoy S, Turan FF. Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects (review). Exp Ther Med. 2015;9:1582–8. https://doi.org/10.3892/etm.2015.2346.
Afzal O, Altamimi ASA, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. Nanoparticles in drug delivery: from history to therapeutic applications. Nanomaterials (Basel). 2022;12:4494. https://doi.org/10.3390/nano12244494.
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules. 2019;25:112. https://doi.org/10.3390/molecules25010112.
Malik S, Muhammad K, Waheed Y. Nanotechnology: a revolution in modern industry. Molecules. 2023;28:661. https://doi.org/10.3390/molecules28020661.
Cha BG, Kim J. Functional mesoporous silica nanoparticles for bio-imaging applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11: e1515. https://doi.org/10.1002/wnan.1515.
Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10:118. https://doi.org/10.3390/pharmaceutics10030118.
Noureddine A, Maestas-Olguin A, Tang L, Corman-Hijar JI, Olewine M, Krawchuck JA, Tsala Ebode J, Edeh C, Dang C, Negrete OA, et al. Future of mesoporous silica nanoparticles in nanomedicine: protocol for reproducible synthesis, characterization, lipid coating, and loading of therapeutics (chemotherapeutic, proteins, siRNA and mRNA). ACS Nano. 2023;17:16308–25. https://doi.org/10.1021/acsnano.3c07621.
Duan F, Feng X, Jin Y, Liu D, Yang X, Zhou G, Liu D, Li Z, Liang XJ, Zhang J. Metal-carbenicillin framework-based nanoantibiotics with enhanced penetration and highly efficient inhibition of MRSA. Biomaterials. 2017;144:155–65. https://doi.org/10.1016/j.biomaterials.2017.08.024.
Liu XC, Wu CZ, Hu XF, Wang TL, Jin XP, Ke SF, Wang E, Wu G. Gastrodin attenuates neuronal apoptosis and neurological deficits after experimental intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2020;29: 104483. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104483.
Qu J, Chen W, Hu R, Feng H. The injury and therapy of reactive oxygen species in intracerebral hemorrhage looking at mitochondria. Oxid Med Cell Longev. 2016;2016:2592935. https://doi.org/10.1155/2016/2592935.
Wang M, Sun X, Wang Y, Deng X, Miao J, Zhao D, Sun K, Li M, Wang X, Sun W, Qin J. Construction of selenium nanoparticle-loaded mesoporous silica nanoparticles with potential antioxidant and antitumor activities as a selenium supplement. ACS Omega. 2022;7:44851–60. https://doi.org/10.1021/acsomega.2c04975.
Yuan X, Jia Z, Li J, Liu Y, Huang Y, Gong Y, Guo X, Chen X, Cen J, Liu J. A diselenide bond-containing ROS-responsive ruthenium nanoplatform delivers nerve growth factor for Alzheimer’s disease management by repairing and promoting neuron regeneration. J Mater Chem B. 2021;9:7835–47. https://doi.org/10.1039/d1tb01290h.
Zhu R, He Q, Li Z, Ren Y, Liao Y, Zhang Z, Dai Q, Wan C, Long S, Kong L, et al. ROS-cleavable diselenide nanomedicine for NIR-controlled drug release and on-demand synergistic chemo-photodynamic therapy. Acta Biomater. 2022;153:442–52. https://doi.org/10.1016/j.actbio.2022.09.061.
Shen Z, Wen H, Zhou H, Hao L, Chen H, Zhou X. Coordination bonding-based polydopamine-modified mesoporous silica for sustained avermectin release. Mater Sci Eng C Mater Biol Appl. 2019;105: 110073. https://doi.org/10.1016/j.msec.2019.110073.
Zhao H, Chao Y, Liu J, Huang J, Pan J, Guo W, Wu J, Sheng M, Yang K, Wang J, Liu Z. Polydopamine coated single-walled carbon nanotubes as a versatile platform with radionuclide labeling for multimodal tumor imaging and therapy. Theranostics. 2016;6:1833–43. https://doi.org/10.7150/thno.16047.
Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano. 2019;13:8537–65. https://doi.org/10.1021/acsnano.9b04436.
Zeng X, Luo M, Liu G, Wang X, Tao W, Lin Y, Ji X, Nie L, Mei L. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Adv Sci (Weinh). 2018;5:1800510. https://doi.org/10.1002/advs.201800510.
Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: working as “drug” carriers. Bioact Mater. 2020;5:522–41. https://doi.org/10.1016/j.bioactmat.2020.04.003.
Yang B, Wang K, Zhang D, Ji B, Zhao D, Wang X, Zhang H, Kan Q, He Z, Sun J. Polydopamine-modified ROS-responsive prodrug nanoplatform with enhanced stability for precise treatment of breast cancer. RSC Adv. 2019;9:9260–9. https://doi.org/10.1039/c9ra01230c.
Wu H, Wei M, Xu Y, Li Y, Zhai X, Su P, Ma Q, Zhang H. PDA-based drug delivery nanosystems: a potential approach for glioma treatment. Int J Nanomed. 2022;17:3751–75. https://doi.org/10.2147/IJN.S378217.
Li Y, Yang J, Chen X, Hu H, Lan N, Zhao J, Zheng L. Mitochondrial-targeting and NIR-responsive Mn(3)O(4)@PDA@Pd-SS31 nanozymes reduce oxidative stress and reverse mitochondrial dysfunction to alleviate osteoarthritis. Biomaterials. 2024;305: 122449. https://doi.org/10.1016/j.biomaterials.2023.122449.
Zhang J, Zhou Y, Jiang Z, He C, Wang B, Wang Q, Wang Z, Wu T, Chen X, Deng Z, et al. Bioinspired polydopamine nanoparticles as efficient antioxidative and anti-inflammatory enhancers against UV-induced skin damage. J Nanobiotechnology. 2023;21:354. https://doi.org/10.1186/s12951-023-02107-7.
Zhu TT, Wang H, Gu HW, Ju LS, Wu XM, Pan WT, Zhao MM, Yang JJ, Liu PM. Melanin-like polydopamine nanoparticles mediating anti-inflammatory and rescuing synaptic loss for inflammatory depression therapy. J Nanobiotechnology. 2023;21:52. https://doi.org/10.1186/s12951-023-01807-4.
Dai S, Wei J, Zhang H, Luo P, Yang Y, Jiang X, Fei Z, Liang W, Jiang J, Li X. Intermittent fasting reduces neuroinflammation in intracerebral hemorrhage through the Sirt3/Nrf2/HO-1 pathway. J Neuroinflammation. 2022;19:122. https://doi.org/10.1186/s12974-022-02474-2.
Kastvig MH, Bøtker JP, Ge G, Andersen ML. Measurement of hydrogen peroxide vapor in powders with potassium titanium oxide oxalate loaded cellulose pellets as probes. MethodsX. 2021;8: 101405. https://doi.org/10.1016/j.mex.2021.101405.
Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol. 2017;13:420–33.
Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92:463–77. https://doi.org/10.1038/nrneurol.2017.69.
Xiong XY, Liu L, Yang QW. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol. 2016;142:23–44. https://doi.org/10.1016/j.pneurobio.2016.05.001.
Yang X, Xu S, Qian Y, Xiao Q. Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury. Brain Behav Immun. 2017;64:162–72. https://doi.org/10.1016/j.bbi.2017.03.003.
Yang G, Fan X, Mazhar M, Guo W, Zou Y, Dechsupa N, Wang L. Neuroinflammation of microglia polarization in intracerebral hemorrhage and its potential targets for intervention. Front Mol Neurosci. 2022;15:1013706. https://doi.org/10.3389/fnmol.2022.1013706.
Han R, Lan X, Han Z, Ren H, Aafreen S, Wang W, Hou Z, Zhu T, Qian A, Han X, et al. Improving outcomes in intracerebral hemorrhage through microglia/macrophage-targeted IL-10 delivery with phosphatidylserine liposomes. Biomaterials. 2023;301: 122277. https://doi.org/10.1016/j.biomaterials.2023.12227.
Zha S, Liu H, Li H, Li H, Wong KL, All AH. Functionalized nanomaterials capable of crossing the blood-brain barrier. ACS Nano. 2024;18:1820–45. https://doi.org/10.1021/acsnano.3c10674.
Yuan J, Li L, Yang Q, Ran H, Wang J, Hu K, Pu W, Huang J, Wen L, Zhou L, et al. Targeted treatment of ischemic stroke by bioactive nanoparticle-derived eactive oxygen species responsive and inflammation-resolving nanotherapies. ACS Nano. 2021;15:16076–94. https://doi.org/10.1021/acsnano.1c04753.
Ding S, Khan AI, Cai X, Song Y, Lyu Z, Du D, Dutta P, Lin Y. Overcoming blood-brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater Today (Kidlington). 2020;37:112–25. https://doi.org/10.1016/j.mattod.2020.02.001.
Keep RF, Andjelkovic AV, Xiang J, Stamatovic SM, Antonetti DA, Hua Y, Xi G. Brain endothelial cell junctions after cerebral hemorrhage: changes, mechanisms and therapeutic targets. J Cereb Blood Flow Metab. 2018;38:1255–75. https://doi.org/10.1177/0271678X18774666.
Shi Y, van der Meel R, Chen X, Lammers T. The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics. 2020;10:7921–4. https://doi.org/10.7150/thno.49577.