domingo, janeiro 19, 2025
HomeNanotechnologyOut-of-plane coordination of iridium single atoms with organic molecules and cobalt–iron hydroxides...

Out-of-plane coordination of iridium single atoms with organic molecules and cobalt–iron hydroxides to boost oxygen evolution reaction


  • Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, S. et al. Oxygen-evolving catalytic atoms on metal carbides. Nat. Mater. 20, 1240 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jiang, K. et al. Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation. Nat. Commun. 11, 2701 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tobias, R., Nhan, N. H., Detre, T., Robert, S. & Peter, S. Electrocatalytic oxygen evolution reaction in acidic environments—reaction mechanisms and catalysts. Adv. Energy Mater. 7, 1601275 (2017).

    Article 

    Google Scholar
     

  • Cherevko, S. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal. Today 262, 170–180 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yan, Z. et al. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat. Commun. 9, 2373 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, W. et al. Ligand modulation of active sites to promote electrocatalytic oxygen evolution. Adv. Mater. 34, 2200270 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, L. et al. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat. Commun. 9, 5236 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huang, C. J. et al. A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction. Appl. Catal. B Environ. 325, 122313 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Batool, M., Hameed, A. & Nadeem, M. A. Recent developments on iron and nickel-based transition metal nitrides for overall water splitting: a critical review. Coord. Chem. Rev. 480, 215029 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mohili, R., Hemanth, N. R., Jin, H., Lee, K. & Chaudhari, N. Emerging high entropy metal sulphides and phosphides for electrochemical water splitting. J. Mater. Chem. A 11, 10463–10472 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Y. et al. Iridium single atoms incorporated in Co3O4 efficiently catalyze the oxygen evolution in acidic conditions. Nat. Commun. 13, 7754 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dincă, M., Surendranath, Y. & Nocera, D. G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl Acad. Sci. USA 107, 10337 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauer, J., Buss, D. H., Harms, H.-J. & Glemser, O. The electrochemical behavior of positive cobalt/aluminum and cobalt/iron hydroxide electrodes. J. Electrochem. Soc. 137, 173–178 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Benson, P., Briggs, G. W. D. & Wynne-Jones, W. F. K. The cobalt hydroxide electrode—I. Structure and phase transitions of the hydroxides. Electrochim. Acta 9, 275–276 (1964).

    Article 
    CAS 

    Google Scholar
     

  • Benson, P., Briggs, G. W. D. & Wynne-Jones, W. F. K. The cobalt hydroxide electrode—II. Electrochemical behavior. Electrochim. Acta 9, 281–288 (1964).

    Article 
    CAS 

    Google Scholar
     

  • Babar, P. et al. Cobalt iron hydroxide as a precious metal-free bifunctional electrocatalyst for efficient overall water splitting. Small 14, 1702568 (2018).

    Article 

    Google Scholar
     

  • Wu, J. et al. Constructing electrocatalysts with composition gradient distribution by solubility product theory: amorphous/crystalline CoNiFe-LDH hollow nanocages. Adv. Funct. Mater. 33, 2300808 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Enkhtuvshin, E. et al. Surface reconstruction of Ni–Fe layered double hydroxide inducing chloride ion blocking materials for outstanding overall seawater splitting. Adv. Funct. Mater. 33, 2214069 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. et al. High-density cationic defects coupling with local alkaline-enriched environment for efficient and stable water oxidation. Angew. Chem. Int. Ed. 62, e2022178 (2023).


    Google Scholar
     

  • Arshad, F. et al. Microwave-assisted growth of spherical core-shell NiFe LDH@CuxO nanostructures for electrocatalytic water oxidation reaction. Int. J. Hydrog. Energy 48, 4719–4727 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Efficient electrocatalysis for oxygen evolution: W-doped NiFe nanosheets with oxygen vacancies constructed by facile electrodeposition and corrosion. Chem. Eng. J. 452, 139104 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Cui, H. et al. Synergistic electronic interaction between ruthenium and nickel-iron hydroxide for enhanced oxygen evolution reaction. Rare Met. 41, 2606–2615 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. J. et al. Zn-doped nickel iron (oxy)hydroxide nanocubes passivated by polyanions with high catalytic activity and corrosion resistance for seawater oxidation. J. Energy Chem. 81, 82–92 (2023).

    Article 

    Google Scholar
     

  • Li, P. et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 10, 1711 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai, P. et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 12, 4587 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mu, X. et al. Breaking the symmetry of single-atom catalysts enables an extremely low energy barrier and high stability for large-current-density water splitting. Energy Environ. Sci. 15, 4048 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction. Nat. Commun. 13, 6875 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, X. et al. Convergent paired electrosynthesis of dimethyl carbonate from carbon dioxide enabled by designing the superstructure of axial oxygen coordinated nickel single-atom catalysts. Energy Environ. Sci. 16, 502–512 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Axial phosphate coordination in Co single atoms boosts electrochemical oxygen evolution. Adv. Sci. 10, 2206107 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, J. et al. Sub-nanometer-scale fine regulation of interlayer distance in Ni-Co layered double hydroxides leading to high-rate supercapacitors. Nano Energy 76, 105026 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, J. et al. Insight into the decay mechanism of cycling capacitance for layered double hydroxides at subnanometer scale. Chem. Commun. 58, 9124–9127 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, J. et al. Balancing loading mass and gravimetric capacitance of NiCo−layered double hydroxides to achieve ultrahigh areal performance for flexible supercapacitors. Adv. Powder Mater. 3, 100151 (2024).

    Article 

    Google Scholar
     

  • Li, N. et al. Identification of the active-layer structures for acidic oxygen evolution from 9R-BaIrO3 electrocatalyst with enhanced iridium mass activity. J. Am. Chem. Soc. 143, 18001–18009 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Enhancing water oxidation of Ru single atoms via oxygen-coordination bonding with NiFe layered double hydroxide. ACS Catal. 13, 2771–2779 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hu, Y. et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy Mater. 11, 2002816 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Duan, X. et al. Stabilizing single-atomic ruthenium by ferrous ion doped NiFe-LDH towards highly efficient and sustained water oxidation. Chem. Eng. J. 466, 136962 (2022).

    Article 

    Google Scholar
     

  • Wang, Y. et al. Interfacial synergy between dispersed Ru sub-nanoclusters and porous NiFe layered double hydroxide on accelerated overall water splitting by intermediate modulation. Nanoscale 12, 9669–9679 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jia, C. et al. Ir single atoms modified Ni(OH)2 nanosheets on hierarchical porous nickel foam for efficient oxygen evolution. Nano Res. 15, 10014–10020 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xing, Y., Ku, J., Fu, W., Wang, L. & Chen, H. Inductive effect between atomically dispersed iridium and transition-metal hydroxide nanosheets enables highly efficient oxygen evolution reaction. Chem. Eng. J. 395, 125149 (2020).

    Article 
    CAS 

    Google Scholar
     

  • He, Q. et al. Confining high-valence iridium single sites onto nickel oxyhydroxide for robust oxygen evolution. Nano Lett. 22, 3832–3839 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution. Nat. Commun. 13, 2473 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 140, 3876–3879 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, J., Li, Z., Zhan, F. & Shao, M. Phase engineering of cobalt hydroxide toward cation intercalation. Chem. Sci. 12, 1756–1761 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nørskov, J. K., Abild-Pedersen, F., Studt, F. & Thomas, B. Density functional theory in surface chemistry and catalysis. PNAS 108, 937–943 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Q. et al. Subnanometric Ru clusters with upshifted d band center improve performance for alkaline hydrogen evolution reaction. Nat. Commun. 13, 3958 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, H. et al. A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis. Nat. Commun. 14, 3934 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES
    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments