sábado, novembro 23, 2024
HomeNanotechnologyNanosilicates facilitate periodontal regeneration potential by activating the PI3K-AKT signaling pathway in...

Nanosilicates facilitate periodontal regeneration potential by activating the PI3K-AKT signaling pathway in periodontal ligament cells | Journal of Nanobiotechnology


  • Slots J. Periodontitis: facts, fallacies and the future. Periodontol 2000. 2017;75:7–23.

  • Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, Flemmig TF, Garcia R, Giannobile WV, Graziani F, et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World workshop on the classification of Periodontal and Peri-implant diseases and conditions. J Clin Periodontol. 2018;45(Suppl 20):S162–70.

    PubMed 

    Google Scholar
     

  • Sculean A, Chapple IL, Giannobile WV. Wound models for periodontal and bone regeneration: the role of biologic research. Periodontol 2000. 2015;68:7–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkataiah VS, Handa K, Njuguna MM, Hasegawa T, Maruyama K, Nemoto E, Yamada S, Sugawara S, Lu L, Takedachi M, et al. Periodontal regeneration by allogeneic transplantation of adipose tissue derived Multi-lineage Progenitor Stem cells in vivo. Sci Rep. 2019;9:921.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sallum EA, Ribeiro FV, Ruiz KS, Sallum AW. Experimental and clinical studies on regenerative periodontal therapy. Periodontol 2000. 2019;79:22–55.

    Article 
    PubMed 

    Google Scholar
     

  • Villar CC, Cochran DL. Regeneration of periodontal tissues: guided tissue regeneration. Dent Clin North Am. 2010;54:73–92.

    Article 
    PubMed 

    Google Scholar
     

  • Kao RT, Nares S, Reynolds MA. Periodontal regeneration – intrabony defects: a systematic review from the AAP Regeneration Workshop. J Periodontol. 2015;86:S77–104.

    Article 
    PubMed 

    Google Scholar
     

  • Lin Z, Rios HF, Cochran DL. Emerging regenerative approaches for periodontal reconstruction: a systematic review from the AAP Regeneration Workshop. J Periodontol. 2015;86:S134–152.

    Article 
    PubMed 

    Google Scholar
     

  • Majzoub J, Barootchi S, Tavelli L, Wang CW, Chan HL, Wang HL. Guided tissue regeneration combined with bone allograft in infrabony defects: clinical outcomes and assessment of prognostic factors. J Periodontol. 2020;91:746–55.

    Article 
    PubMed 

    Google Scholar
     

  • Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol. 2020;8:922.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mostafavi E, Medina-Cruz D, Kalantari K, Taymoori A, Soltantabar P, Webster TJ. Electroconductive Nanobiomaterials for tissue Engineering and Regenerative Medicine. Bioelectricity. 2020;2:120–49.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park J, Park S, Kim JE, Jang KJ, Seonwoo H, Chung JH. Enhanced osteogenic differentiation of Periodontal ligament stem cells using a graphene oxide-coated poly(ε-caprolactone) Scaffold. Polym (Basel) 2021, 13.

  • Cui D, Kong N, Ding L, Guo Y, Yang W, Yan F. Ultrathin 2D Titanium Carbide MXene (Ti(3) C(2) T(x)) nanoflakes activate WNT/HIF-1α-Mediated metabolism reprogramming for Periodontal Regeneration. Adv Healthc Mater. 2021;10:e2101215.

    Article 
    PubMed 

    Google Scholar
     

  • Tomás H, Alves CS, Rodrigues J. Laponite®: A key nanoplatform for biomedical applications? Nanomedicine 2018, 14:2407–20.

  • Gaharwar AK, Cross LM, Peak CW, Gold K, Carrow JK, Brokesh A, Singh KA. 2D nanoclay for Biomedical Applications: Regenerative Medicine, therapeutic delivery, and Additive Manufacturing. Adv Mater. 2019;31:e1900332.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang T, Chen G, Shi X, Guo R. Hyaluronic Acid-Decorated Laponite(®) Nanocomposites for Targeted Anticancer Drug Delivery. Polym (Basel) 2019, 11.

  • Mihaila SM, Gaharwar AK, Reis RL, Khademhosseini A, Marques AP, Gomes ME. The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials. 2014;35:9087–99.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Carrow JK, Cross LM, Reese RW, Jaiswal MK, Gregory CA, Kaunas R, Singh I, Gaharwar AK. Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates. Proc Natl Acad Sci U S A. 2018;115:E3905–13.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Veernala I, Giri J, Pradhan A, Polley P, Singh R, Yadava SK. Effect of Fluoride Doping in Laponite Nanoplatelets on osteogenic differentiation of Human Dental follicle stem cells (hDFSCs). Sci Rep. 2019;9:915.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li T, Liu ZL, Xiao M, Yang ZZ, Peng MZ, Li CD, Zhou XJ, Wang JW. Impact of bone marrow mesenchymal stem cell immunomodulation on the osteogenic effects of laponite. Stem Cell Res Ther. 2018;9:100.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu X, Xiao L, Xu Y, Zhuo J, Yang X, Li L, Xiao N, Tao J, Zhong Q, Li Y, et al. Vascularized bone regeneration accelerated by 3D-printed nanosilicate-functionalized polycaprolactone scaffold. Regen Biomater. 2021;8:rbab061.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu X, Zhuo J, Xiao L, Xu Y, Yang X, Li Y, Du Z, Luo K. Nanosilicate-Functionalized Polycaprolactone orchestrates Osteogenesis and osteoblast-Induced multicellular interactions for potential endogenous vascularized bone regeneration. Macromol Biosci. 2022;22:e2100265.

    Article 
    PubMed 

    Google Scholar
     

  • Li J, Zhang F, Zhang N, Geng X, Meng C, Wang X, Yang Y. Osteogenic capacity and cytotherapeutic potential of periodontal ligament cells for periodontal regeneration in vitro and in vivo. PeerJ. 2019;7:e6589.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Errico JA, Ouyang H, Berry JE, MacNeil RL, Strayhorn C, Imperiale MJ, Harris NL, Goldberg H, Somerman MJ. Immortalized cementoblasts and periodontal ligament cells in culture. Bone. 1999;25:39–47.

    Article 
    PubMed 

    Google Scholar
     

  • Iwayama T, Iwashita M, Miyashita K, Sakashita H, Matsumoto S, Tomita K, Bhongsatiern P, Kitayama T, Ikegami K, Shimbo T et al. Plap-1 lineage tracing and single-cell transcriptomics reveal cellular dynamics in the periodontal ligament. Development 2022, 149.

  • Tour G, Wendel M, Moll G, Tcacencu I. Bone repair using periodontal ligament progenitor cell-seeded constructs. J Dent Res. 2012;91:789–94.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zheng B, Jiang J, Chen Y, Lin M, Du Z, Xiao Y, Luo K, Yan F. Leptin overexpression in bone marrow stromal cells promotes Periodontal Regeneration in a rat model of osteoporosis. J Periodontol. 2017;88:808–18.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Han X, Alu A, Liu H, Shi Y, Wei X, Cai L, Wei Y. Biomaterial-assisted biotherapy: a brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioact Mater. 2022;17:29–48.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Isaka J, Ohazama A, Kobayashi M, Nagashima C, Takiguchi T, Kawasaki H, Tachikawa T, Hasegawa K. Participation of periodontal ligament cells with regeneration of alveolar bone. J Periodontol. 2001;72:314–23.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cui D, Chen C, Luo B, Yan F. Inhibiting PHD2 in human periodontal ligament cells via lentiviral vector-mediated RNA interference facilitates cell osteogenic differentiation and periodontal repair. J Leukoc Biol. 2021;110:449–59.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Suo L, Wu H, Wang P, Xue Z, Gao J, Shen J. The improvement of periodontal tissue regeneration using a 3D-printed carbon nanotube/chitosan/sodium alginate composite scaffold. J Biomed Mater Res B Appl Biomater. 2023;111:73–84.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li L, Zhang Y, Wang M, Zhou J, Zhang Q, Yang W, Li Y, Yan F. Gold nanoparticles combined human β-Defensin 3 Gene-Modified Human Periodontal ligament cells alleviate Periodontal Destruction via the p38 MAPK pathway. Front Bioeng Biotechnol. 2021;9:631191.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Z, Jia L, Zhang Q, Sun L, Wang X, Qin X, Xia Y. An altered oral microbiota induced by injections of superparamagnetic iron oxide nanoparticle-labeled periodontal ligament stem cells helps periodontal bone regeneration in rats. Bioeng Transl Med. 2023;8:e10466.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen X, Liu Y, Miao L, Wang Y, Ren S, Yang X, Hu Y, Sun W. Controlled release of recombinant human cementum protein 1 from electrospun multiphasic scaffold for cementum regeneration. Int J Nanomed. 2016;11:3145–58.

    Article 
    CAS 

    Google Scholar
     

  • Arzate H, Zeichner-David M, Mercado-Celis G. Cementum proteins: role in cementogenesis, biomineralization, periodontium formation and regeneration. Periodontol 2000. 2015;67:211–33.

    Article 
    PubMed 

    Google Scholar
     

  • Liu J, Yang L, Liu K, Gao F. Hydrogel scaffolds in bone regeneration: their promising roles in angiogenesis. Front Pharmacol. 2023;14:1050954.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Demcisakova Z, Luptakova L, Tirpakova Z, Kvasilova A, Medvecky L, De Spiegelaere W, Petrovova E. Evaluation of Angiogenesis in an Acellular Porous Biomaterial based on Polyhydroxybutyrate and Chitosan using the Chicken Ex Ovo Chorioallantoic membrane model. Cancers (Basel) 2022, 14.

  • Pizzicannella J, Gugliandolo A, Orsini T, Fontana A, Ventrella A, Mazzon E, Bramanti P, Diomede F, Trubiani O. Engineered Extracellular vesicles from Human Periodontal-Ligament stem cells increase VEGF/VEGFR2 expression during bone regeneration. Front Physiol. 2019;10:512.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shang L, Liu Z, Ma B, Shao J, Wang B, Ma C, Ge S. Dimethyloxallyl glycine/nanosilicates-loaded osteogenic/angiogenic difunctional fibrous structure for functional periodontal tissue regeneration. Bioact Mater. 2021;6:1175–88.

    PubMed 
    CAS 

    Google Scholar
     

  • Lian M, Sun B, Han Y, Yu B, Xin W, Xu R, Ni B, Jiang W, Hao Y, Zhang X, et al. A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration. Biomaterials. 2021;274:120841.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Qazi TH, Tytgat L, Dubruel P, Duda GN, Van Vlierberghe S, Geissler S. Extrusion printed scaffolds with varying pore size as modulators of MSC Angiogenic Paracrine effects. ACS Biomater Sci Eng. 2019;5:5348–58.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang J, Hao X, Li Q, Akpanyung M, Nejjari A, Neve AL, Ren X, Guo J, Feng Y, Shi C, Zhang W. CAGW peptide- and PEG-Modified gene carrier for selective Gene Delivery and Promotion of angiogenesis in HUVECs in vivo. ACS Appl Mater Interfaces. 2017;9:4485–97.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu Q, Zhang H, An Y, Zhang Y, He Q, Liu K, Xia Q, Zhou H. Xinkeshu tablets promote angiogenesis in zebrafish embryos and human umbilical vein endothelial cells through multiple signaling pathways. J Ethnopharmacol. 2023;314:116636.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Iwasaki K, Akazawa K, Nagata M, Komaki M, Peng Y, Umeda M, Watabe T, Morita I. Angiogenic effects of secreted factors from Periodontal Ligament Stem cells. Dent J (Basel) 2021, 9.

  • Nanda SS, Yi DK. Recent advances in synergistic effect of nanoparticles and its Biomedical Application. Int J Mol Sci 2024, 25.

  • Brokesh AM, Cross LM, Kersey AL, Murali A, Richter C, Gregory CA, Singh I, Gaharwar AK. Dissociation of nanosilicates induces downstream endochondral differentiation gene expression program. Sci Adv. 2022;8:eabl9404.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mousa M, Evans ND, Oreffo ROC, Dawson JI. Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials. 2018;159:204–14.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Mousa M, Kim YH, Evans ND, Oreffo ROC, Dawson JI. Tracking cellular uptake, intracellular trafficking and fate of nanoclay particles in human bone marrow stromal cells. Nanoscale. 2023;15:18457–72.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ersahin T, Tuncbag N, Cetin-Atalay R. The PI3K/AKT/mTOR interactive pathway. Mol Biosyst. 2015;11:1946–54.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pompura SL, Dominguez-Villar M. The PI3K/AKT signaling pathway in regulatory T-cell development, stability, and function. J Leukoc Biol 2018.

  • Liu X, Chen M, Luo J, Zhao H, Zhou X, Gu Q, Yang H, Zhu X, Cui W, Shi Q. Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration. Biomaterials. 2021;276:121037.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gao S, Chen B, Zhu Z, Du C, Zou J, Yang Y, Huang W, Liao J. PI3K-Akt signaling regulates BMP2-induced osteogenic differentiation of mesenchymal stem cells (MSCs): a transcriptomic landscape analysis. Stem Cell Res. 2023;66:103010.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen J, Liu Z, Zhang H, Yang Y, Zeng H, Zhong R, Lai S, Liao H. YBX1 promotes MSC osteogenic differentiation by activating the PI3K/AKT pathway. Curr Stem Cell Res Ther. 2023;18:513–21.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu B, Wu J, Li T, Liu S, Guo J, Yu Y, Qiu X, Zhao Y, Peng H, Zhang J, et al. A glutathione peroxidase-mimicking Nanozyme precisely alleviates reactive oxygen species and promotes Periodontal Bone Regeneration. Adv Healthc Mater. 2024;13:e2302485.

    Article 
    PubMed 

    Google Scholar
     

  • Padial-Molina M, Rodriguez JC, Volk SL, Rios HF. Standardized in vivo model for studying novel regenerative approaches for multitissue bone-ligament interfaces. Nat Protoc. 2015;10:1038–49.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu T, Xie K, Wang C, Ivanovski S, Zhou Y. Immunomodulatory nanotherapeutic approaches for periodontal tissue regeneration. Nanoscale. 2023;15:5992–6008.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang S, Wang P, Thompson R, Ostrikov K, Xiao Y, Zhou Y. Plasma-activated medium triggers immunomodulation and autophagic activity for periodontal regeneration. Bioeng Transl Med. 2023;8:e10528.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Polimeni G, Xiropaidis AV, Wikesjö UM. Biology and principles of periodontal wound healing/regeneration. Periodontol 2000. 2006;41:30–47.

    Article 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES
    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments