segunda-feira, março 3, 2025
HomeNanotechnologyNanoscopic cross-grain cation homogenization in perovskite solar cells

Nanoscopic cross-grain cation homogenization in perovskite solar cells


  • Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y. et al. Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nat. Energy 7, 794–807 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koh, T. M. et al. Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118, 16458–16462 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pellet, N. et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53, 3151–3157 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, X. et al. Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation. ACS Energy Lett. 1, 1014–1020 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Unlocking the ambient temperature effect on FA-based perovskites crystallization by in situ optical method. Adv. Mater. 36, 2307635 (2023).

    Article 

    Google Scholar
     

  • Li, Z. et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28, 284–292 (2016).

    Article 

    Google Scholar
     

  • Yi, C. et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656–662 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Jacobsson, T. J. et al. Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J. Am. Chem. Soc. 138, 10331–10343 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, M. et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5, 79–88 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liang, Z. et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai, Y. et al. Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science 378, 747–754 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, J., Xu, P., Liu, J. & You, X.-Z. Sequential introduction of cations deriving large-grain CsxFA1xPbI3 thin film for planar hybrid solar cells: insight into phase-segregation and thermal-healing behavior. Small 13, 1603225 (2017).

    Article 

    Google Scholar
     

  • Li, N. et al. Microscopic degradation in formamidinium-cesium lead iodide perovskite solar cells under operational stressors. Joule 4, 1743–1758 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L. et al. A-site phase segregation in mixed cation perovskite. Mater. Rep. Energy 1, 100064 (2021).

    CAS 

    Google Scholar
     

  • Mullins, W. W. Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (2004).

    Article 

    Google Scholar
     

  • Zhao, B., Shvindlerman, L. & Gottstein, G. Line tension of grain boundary triple junctions in the copper tricrystals. In TMS 2014: 143rd Annual Meeting & Exhibition 1063–1068 (Springer, 2016).

  • Hao, M. et al. Flattening grain-boundary grooves for perovskite solar cells with high optomechanical reliability. Adv. Mater. 35, 2211155 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yan, N., Fang, Z., Dai, Z., Feng, J. & Liu, S. Buried interface—the key issues for high performance inverted perovskite solar cells. Adv. Funct. Mater. 34, 2314039 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dong, Q. et al. Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nat. Commun. 12, 973 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, L. et al. Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids. Sci. Adv. 8, eabo3733 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hackl, K., Fischer, F. D. & Svoboda, J. A variational approach to the modelling of grooving in a three-dimensional setting. Acta Mater. 129, 331–342 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mullins, W. W. The effect of thermal grooving on grain boundary motion. Acta Metall. 6, 414–427 (1958).

    Article 

    Google Scholar
     

  • Saylor, D. M. & Rohrer, G. S. Measuring the influence of grain‐boundary misorientation on thermal groove geometry in ceramic polycrystals. J. Am. Ceram. Soc. 82, 1529–1536 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Correa-Baena, J.-P. et al. Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites. Science 363, 627–631 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guthrey, H. & Moseley, J. A review and perspective on cathodoluminescence analysis of halide perovskites. Adv. Energy Mater. 10, 1903840 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Taylor, E. J. et al. Hyperspectral mapping of nanoscale photophysics and degradation processes in hybrid perovskite at the single grain level. Nanoscale Adv. 5, 4687–4695 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. et al. Understanding the role of cesium on chemical complexity in methylammonium-free metal halide perovskites. Adv. Energy Mater. 13, 2202880 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photon. 15, 238–244 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ma, F. et al. Stable α/δ phase junction of formamidinium lead iodide perovskites for enhanced near-infrared emission. Chem. Sci. 8, 800–805 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai, M. et al. Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res. 10, 1107–1114 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, P. et al. Seed-assisted growth of methylammonium-free perovskite for efficient inverted perovskite solar cells. Small Methods 6, 2200048 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 577, 209–215 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saidaminov, M. I. et al. Multi-cation perovskites prevent carrier reflection from grain surfaces. Nat. Mater. 19, 412–418 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao, S. et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10, 2560 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narra, S. et al. Femtosecond transient absorption spectra and dynamics of carrier relaxation of tin perovskites in the absence and presence of additives. J. Phys. Chem. Lett. 11, 5699–5704 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, L. et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv. Mater. 34, 2201681 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Duan, T. et al. Chiral-structured heterointerfaces enable durable perovskite solar cells. Science 384, 878–884 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, Y. et al. A spiro-OMeTAD based semiconductor composite with over 100 °C glass transition temperature for durable perovskite solar cells. Nano Energy 81, 105655 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, T. et al. Elimination of grain surface concavities for improved perovskite thin-film interfaces. Nat. Energy 9, 999–1010 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Q. et al. Towards linking lab and field lifetimes of perovskite solar cells. Nature 623, 313–318 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Nuclei engineering for even halide distribution in stable perovskite/silicon tandem solar cells. Science 385, 554–560 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, B., Ziemons, A., Shvindlerman, L. S. & Gottstein, G. Surface topography and energy of grain boundary triple junctions in copper tricrystals. Acta Mater. 60, 811–818 (2012).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments