FAO, IFAD, UNICEF, WFP & WHO. The State of Food Security and Nutrition in the World 2022: Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable (FAO, 2022); https://doi.org/10.4060/cc0639en
Lowry, G. V., Avellan, A. & Gilbertson, L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).
Lowry, G. V. et al. Towards realizing nano-enabled precision delivery in plants. Nat. Nanotechnol. 19, 1255–1269 (2024).
Giraldo, J. P., Wu, H., Newkirk, G. M. & Kruss, S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14, 541–553 (2019).
Kah, M., Tufenkji, N. & White, J. C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019).
Wang, D. et al. Nano-enabled pesticides for sustainable agriculture and global food security. Nat. Nanotechnol. 17, 347–360 (2022).
Gupta, S. et al. Portable Raman leaf-clip sensor for rapid detection of plant stress. Sci. Rep. 10, 20206 (2020).
Lohaus, G. & Schwerdtfeger, M. Comparison of sugars, iridoid glycosides and amino acids in nectar and phloem sap of Maurandya barclayana, Lophospermum erubescens, and Brassica napus. PLoS ONE 9, e87689 (2014).
Yin, H. et al. Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 33, 2007764 (2021).
Cao, Y., Lim, E., Xu, M., Weng, J. K. & Marelli, B. Precision delivery of multiscale payloads to tissue-specific targets in plants. Adv. Sci. 7, 1903551 (2020).
Cao, Y. et al. Drug delivery in plants using silk microneedles. Adv. Mater. 35, 2205794 (2023).
Fiorello, I. et al. Plant-like hooked miniature machines for on-leaf sensing and delivery. Commun. Mater. 2, 103 (2021).
Paul, R. et al. Extraction of plant DNA by microneedle patch for rapid detection of plant diseases. ACS Nano 13, 6540–6549 (2019).
Wang, S. et al. Chromatic covalent organic frameworks enabling in-vivo chemical tomography. Nat. Commun. 15, 9300 (2024).
Yi, X., Yuan, Z., Yu, X., Zheng, L. & Wang, C. Novel microneedle patch-based surface-enhanced raman spectroscopy sensor for the detection of pesticide residues. ACS Appl. Mater. Interfaces 15, 4873–4882 (2023).
Baek, S., Jeon, E., Park, K. S., Yeo, K.-H. & Lee, J. Monitoring of water transportation in plant stem with microneedle sap flow sensor. J. Microelectromechanical Syst. 27, 440–447 (2018).
Lyu, S. et al. Going below and beyond the surface: microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioact. Mater. 27, 303–326 (2023).
Ita, K. Ceramic microneedles and hollow microneedles for transdermal drug delivery: two decades of research. J. Drug Deliv. Sci. Technol. 44, 314–322 (2018).
van der Maaden, K. et al. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Deliv. Transl. Res. 5, 397–406 (2015).
Liu, M. et al. Precise and high-throughput delivery of micronutrients in plants enabled by pollen-inspired spiny and biodegradable microcapsules. Adv. Mater. 36, 2401192 (2024).
Marelli, B. & Behrens, A. Silk protein can extend shelf life and improve food security. Nat. Rev. Bioeng 1, 788–790 (2023).
Aldawood, F. K., Andar, A. & Desai, S. A comprehensive review of microneedles: types, materials, processes, characterizations and applications. Polymers 13, 2815 (2021).
Garg, N. et al. Phase 1, randomized, rater and participant blinded placebo-controlled study of the safety, reactogenicity, tolerability and immunogenicity of H1N1 influenza vaccine delivered by VX-103 (a MIMIX microneedle patch [MAP] system) in healthy adults. PLoS ONE 19, e0303450 (2024).
Koeppel, A., Laity, P. R. & Holland, C. The influence of metal ions on native silk rheology. Acta Biomater. 117, 204–212 (2020).
Foo, C. W. P. et al. Role of pH and charge on silk protein assembly in insects and spiders. Appl. Phys. A 82, 223–233 (2006).
Marelli, B. et al. Programming function into mechanical forms by directed assembly of silk bulk materials. Proc. Natl Acad. Sci. USA 114, 451–456 (2017).
Naciri, R., Lahrir, M., Benadis, C., Chtouki, M. & Oukarroum, A. Interactive effect of potassium and cadmium on growth, root morphology and chlorophyll a fluorescence in tomato plant. Sci. Rep. 11, 5384 (2021).
Schaefer, C., Laity, P. R., Holland, C. & McLeish, T. C. B. Silk protein solution: a natural example of sticky reptation. Macromolecules 53, 2669–2676 (2020).
Agricultural Production Statistics 2000–2020 FAOSTAT Analytical Brief Series No. 41 (FAO, 2022).
Zvinavashe, A. T. et al. Degradation of regenerated silk fibroin in soil and marine environments. ACS Sustain. Chem. Eng 10, 11088–11097 (2022).
Liu, M.-J. et al. Regulatory divergence in wound-responsive gene expression between domesticated and wild tomato. Plant Cell 30, 1445–1460 (2018).
Scranton, M. A., Fowler, J. H., Girke, T. & Walling, L. L. Microarray analysis of tomato’s early and late wound response reveals new regulatory targets for leucine aminopeptidase A. PLoS ONE 8, e77889 (2013).
Pearce, G., Strydom, D., Johnson, S. & Ryan, C. A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253, 895–897 (1991).
Dombrowski, J. E. Salt stress activation of wound-related genes in tomato plants. Plant Physiol. 132, 2098–2107 (2003).
Fan, Y., Yang, W., Yan, Q., Chen, C. & Li, J. Genome-wide identification and expression analysis of the protease inhibitor gene families in tomato. Genes 11, 1 (2020).
Capiati, D. A., País, S. M. & Téllez-Iñón, M. T. Wounding increases salt tolerance in tomato plants: evidence on the participation of calmodulin-like activities in cross-tolerance signalling. J. Exp. Bot. 57, 2391–2400 (2006).
Schenstnyi, K. et al. The tomato resistance gene Bs4 suppresses leaf watersoaking phenotypes induced by AvrHah1, a transcription activator-like effector from tomato-pathogenic xanthomonads. New Phytol. 236, 1856–1870 (2022).
Merry, R. et al. Iron deficiency in soybean. Crop Sci. 62, 36–52 (2022).
Bhakta, I., Phadikar, S. & Majumder, K. State-of-the-art technologies in precision agriculture: a systematic review. J. Sci. Food Agric. 99, 4878–4888 (2019).
Lew, T. T. S. et al. Species-independent analytical tools for next-generation agriculture. Nat. Plants 6, 1408–1417 (2020).
Vitamin and Mineral Requirements in Human Nutrition 2nd edn (FAO, WHO, 2004).
Suhani, I., Sahab, S., Srivastava, V. & Singh, R. P. Impact of cadmium pollution on food safety and human health. Curr. Opin. Toxicol. 27, 1–7 (2021).
FAO & WHO. Codex Alimentarius: International Food Standards (FAO, 1995).
Chung, P. J. et al. Rapid detection and quantification of plant innate immunity response using Raman spectroscopy. Front. Plant Sci. 12, 746586 (2021).
Ang, M. C.-Y. et al. Decoding early stress signaling waves in living plants using nanosensor multiplexing. Nat. Commun. 15, 2943 (2024).
vander Straeten, A. et al. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat. Biotechnol. 42, 510–517 (2024).
Rigoldi, F. & Marelli, B. Silk peptide assembly in the presence of sodium and copper ions – scripts collection and snippet of molecular simulations results. Zenodo https://doi.org/10.5281/zenodo.15079007 (2025).
Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).
Liao, Q., Kamerlin, S. C. L. & Strodel, B. Development and application of a nonbonded Cu2+ model that includes the Jahn–Teller effect. J. Phys. Chem. Lett. 6, 2657–2662 (2015).
Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).
Hu, X., Kaplan, D. & Cebe, P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules 39, 6161–6170 (2006).
Li, Z., Persits, N., Gray, D. J. & Ram, R. J. Computational polarized Raman microscopy on sub-surface nanostructures with sub-diffraction-limit resolution. Opt. Express 29, 38027–38043 (2021).
Zhao, J., Lui, H., McLean, D. I. & Zeng, H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectrosc. 61, 1225–1232 (2007).