terça-feira, abril 29, 2025
HomeNanotechnologyNanofabrication of silk microneedles for high-throughput micronutrient delivery and continuous sap monitoring...

Nanofabrication of silk microneedles for high-throughput micronutrient delivery and continuous sap monitoring in plants


  • FAO, IFAD, UNICEF, WFP & WHO. The State of Food Security and Nutrition in the World 2022: Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable (FAO, 2022); https://doi.org/10.4060/cc0639en

  • Lowry, G. V., Avellan, A. & Gilbertson, L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lowry, G. V. et al. Towards realizing nano-enabled precision delivery in plants. Nat. Nanotechnol. 19, 1255–1269 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giraldo, J. P., Wu, H., Newkirk, G. M. & Kruss, S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14, 541–553 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kah, M., Tufenkji, N. & White, J. C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Nano-enabled pesticides for sustainable agriculture and global food security. Nat. Nanotechnol. 17, 347–360 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta, S. et al. Portable Raman leaf-clip sensor for rapid detection of plant stress. Sci. Rep. 10, 20206 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lohaus, G. & Schwerdtfeger, M. Comparison of sugars, iridoid glycosides and amino acids in nectar and phloem sap of Maurandya barclayana, Lophospermum erubescens, and Brassica napus. PLoS ONE 9, e87689 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, H. et al. Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 33, 2007764 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y., Lim, E., Xu, M., Weng, J. K. & Marelli, B. Precision delivery of multiscale payloads to tissue-specific targets in plants. Adv. Sci. 7, 1903551 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Drug delivery in plants using silk microneedles. Adv. Mater. 35, 2205794 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Fiorello, I. et al. Plant-like hooked miniature machines for on-leaf sensing and delivery. Commun. Mater. 2, 103 (2021).

  • Paul, R. et al. Extraction of plant DNA by microneedle patch for rapid detection of plant diseases. ACS Nano 13, 6540–6549 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Chromatic covalent organic frameworks enabling in-vivo chemical tomography. Nat. Commun. 15, 9300 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, X., Yuan, Z., Yu, X., Zheng, L. & Wang, C. Novel microneedle patch-based surface-enhanced raman spectroscopy sensor for the detection of pesticide residues. ACS Appl. Mater. Interfaces 15, 4873–4882 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baek, S., Jeon, E., Park, K. S., Yeo, K.-H. & Lee, J. Monitoring of water transportation in plant stem with microneedle sap flow sensor. J. Microelectromechanical Syst. 27, 440–447 (2018).

    Article 

    Google Scholar
     

  • Lyu, S. et al. Going below and beyond the surface: microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioact. Mater. 27, 303–326 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ita, K. Ceramic microneedles and hollow microneedles for transdermal drug delivery: two decades of research. J. Drug Deliv. Sci. Technol. 44, 314–322 (2018).

    Article 
    CAS 

    Google Scholar
     

  • van der Maaden, K. et al. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Deliv. Transl. Res. 5, 397–406 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M. et al. Precise and high-throughput delivery of micronutrients in plants enabled by pollen-inspired spiny and biodegradable microcapsules. Adv. Mater. 36, 2401192 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Marelli, B. & Behrens, A. Silk protein can extend shelf life and improve food security. Nat. Rev. Bioeng 1, 788–790 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Aldawood, F. K., Andar, A. & Desai, S. A comprehensive review of microneedles: types, materials, processes, characterizations and applications. Polymers 13, 2815 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garg, N. et al. Phase 1, randomized, rater and participant blinded placebo-controlled study of the safety, reactogenicity, tolerability and immunogenicity of H1N1 influenza vaccine delivered by VX-103 (a MIMIX microneedle patch [MAP] system) in healthy adults. PLoS ONE 19, e0303450 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koeppel, A., Laity, P. R. & Holland, C. The influence of metal ions on native silk rheology. Acta Biomater. 117, 204–212 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foo, C. W. P. et al. Role of pH and charge on silk protein assembly in insects and spiders. Appl. Phys. A 82, 223–233 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Marelli, B. et al. Programming function into mechanical forms by directed assembly of silk bulk materials. Proc. Natl Acad. Sci. USA 114, 451–456 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naciri, R., Lahrir, M., Benadis, C., Chtouki, M. & Oukarroum, A. Interactive effect of potassium and cadmium on growth, root morphology and chlorophyll a fluorescence in tomato plant. Sci. Rep. 11, 5384 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaefer, C., Laity, P. R., Holland, C. & McLeish, T. C. B. Silk protein solution: a natural example of sticky reptation. Macromolecules 53, 2669–2676 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agricultural Production Statistics 2000–2020 FAOSTAT Analytical Brief Series No. 41 (FAO, 2022).

  • Zvinavashe, A. T. et al. Degradation of regenerated silk fibroin in soil and marine environments. ACS Sustain. Chem. Eng 10, 11088–11097 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M.-J. et al. Regulatory divergence in wound-responsive gene expression between domesticated and wild tomato. Plant Cell 30, 1445–1460 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scranton, M. A., Fowler, J. H., Girke, T. & Walling, L. L. Microarray analysis of tomato’s early and late wound response reveals new regulatory targets for leucine aminopeptidase A. PLoS ONE 8, e77889 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pearce, G., Strydom, D., Johnson, S. & Ryan, C. A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253, 895–897 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dombrowski, J. E. Salt stress activation of wound-related genes in tomato plants. Plant Physiol. 132, 2098–2107 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, Y., Yang, W., Yan, Q., Chen, C. & Li, J. Genome-wide identification and expression analysis of the protease inhibitor gene families in tomato. Genes 11, 1 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Capiati, D. A., País, S. M. & Téllez-Iñón, M. T. Wounding increases salt tolerance in tomato plants: evidence on the participation of calmodulin-like activities in cross-tolerance signalling. J. Exp. Bot. 57, 2391–2400 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schenstnyi, K. et al. The tomato resistance gene Bs4 suppresses leaf watersoaking phenotypes induced by AvrHah1, a transcription activator-like effector from tomato-pathogenic xanthomonads. New Phytol. 236, 1856–1870 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merry, R. et al. Iron deficiency in soybean. Crop Sci. 62, 36–52 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bhakta, I., Phadikar, S. & Majumder, K. State-of-the-art technologies in precision agriculture: a systematic review. J. Sci. Food Agric. 99, 4878–4888 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lew, T. T. S. et al. Species-independent analytical tools for next-generation agriculture. Nat. Plants 6, 1408–1417 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Vitamin and Mineral Requirements in Human Nutrition 2nd edn (FAO, WHO, 2004).

  • Suhani, I., Sahab, S., Srivastava, V. & Singh, R. P. Impact of cadmium pollution on food safety and human health. Curr. Opin. Toxicol. 27, 1–7 (2021).

    Article 
    CAS 

    Google Scholar
     

  • FAO & WHO. Codex Alimentarius: International Food Standards (FAO, 1995).

  • Chung, P. J. et al. Rapid detection and quantification of plant innate immunity response using Raman spectroscopy. Front. Plant Sci. 12, 746586 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ang, M. C.-Y. et al. Decoding early stress signaling waves in living plants using nanosensor multiplexing. Nat. Commun. 15, 2943 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • vander Straeten, A. et al. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat. Biotechnol. 42, 510–517 (2024).

  • Rigoldi, F. & Marelli, B. Silk peptide assembly in the presence of sodium and copper ions – scripts collection and snippet of molecular simulations results. Zenodo https://doi.org/10.5281/zenodo.15079007 (2025).

  • Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, Q., Kamerlin, S. C. L. & Strodel, B. Development and application of a nonbonded Cu2+ model that includes the Jahn–Teller effect. J. Phys. Chem. Lett. 6, 2657–2662 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, X., Kaplan, D. & Cebe, P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules 39, 6161–6170 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z., Persits, N., Gray, D. J. & Ram, R. J. Computational polarized Raman microscopy on sub-surface nanostructures with sub-diffraction-limit resolution. Opt. Express 29, 38027–38043 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, J., Lui, H., McLean, D. I. & Zeng, H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectrosc. 61, 1225–1232 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments