Blancon, J. C., Even, J., Stoumpos, C. C., Kanatzidis, M. G. & Mohite, A. D. Semiconductor physics of organic–inorganic 2D halide perovskites. Nat. Nanotechnol. 15, 969–985 (2020).
Wei, Y., Cheng, Z. & Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 48, 310–350 (2019).
Liu, X. K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).
Kim, Y. H., Kim, J. S. & Lee, T. W. Strategies to improve luminescence efficiency of metal-halide perovskites and light-emitting diodes. Adv. Mater. 31, e1804595 (2019).
Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).
Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).
Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).
Han, D. et al. Tautomeric mixture coordination enables efficient lead-free perovskite LEDs. Nature 622, 493–498 (2023).
Sun, Y. et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615, 830–835 (2023).
Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. 16, 637–643 (2022).
Luo, J. et al. Efficient blue light emitting diodes based on europium halide perovskites. Adv. Mater. 33, e2101903 (2021).
Tong, Y. et al. In situ halide exchange of cesium lead halide perovskites for blue light-emitting diodes. Adv. Mater. 35, e2207111 (2023).
Karlsson, M. et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun. 12, 361 (2021).
Zhang, L. et al. Manipulating local lattice distortion for spectrally stable and efficient mixed-halide blue perovskite LEDs. Angew. Chem. Int. Ed. 62, e202302184 (2023).
Jiang, Y. et al. Spectra stable blue perovskite light-emitting diodes. Nat. Commun. 10, 1868 (2019).
Yuan, S. et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv. Mater. 31, e1904319 (2019).
Wang, C. et al. Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes. Nat. Commun. 11, 6428 (2020).
Tian, Y. et al. Modulating low-dimensional domains of self-assembling quasi-2D perovskites for efficient and spectra-stable blue light-emitting diodes. Chem. Eng. J. 415, 129088 (2021).
Zhang, M. et al. Water-driven synthesis of deep-blue perovskite colloidal quantum wells for electroluminescent devices. Angew. Chem. Int. Ed. 62, e202300149 (2023).
Yin, W. et al. Multidentate ligand polyethylenimine enables bright color-saturated blue light-emitting diodes based on CsPbBr3 nanoplatelets. ACS Energy Lett. 6, 477–484 (2021).
Liu, A. et al. High color-purity and efficient pure-blue perovskite light-emitting diodes based on strongly confined monodispersed quantum dots. Nano Lett. 23, 2405–2411 (2023).
Pang, P. et al. Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes. ACS Nano 14, 11420–11430 (2020).
Jia, Y. et al. Unveiling the complex evolution in mixed Br–Cl perovskite precursors for high-efficiency deep-blue light-emitting diodes. Small Struct. 4, 202200393 (2023).
Yang, Y. et al. Highly efficient pure-blue light-emitting diodes based on rubidium and chlorine alloyed metal halide perovskite. Adv. Mater. 33, e2100783 (2021).
Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).
Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020).
Guo, J. et al. Pb2+ doped CsCdBr3 perovskite nanorods for pure-blue light-emitting diodes. Chem. Eng. J. 427, 131010 (2022).
Zou, G. et al. Color-stable deep-blue perovskite light-emitting diodes based on organotrichlorosilane post-treatment. Adv. Funct. Mater. 31, 2103219 (2021).
Zhou, Y. H. et al. Stabilized low-dimensional species for deep-blue perovskite light-emitting diodes with EQE approaching 3.4%. J. Am. Chem. Soc. 144, 18470–18478 (2022).
Yuan, S. et al. Efficient and spectrally stable blue perovskite light-emitting diodes employing a cationic pi-conjugated polymer. Adv. Mater. 33, e2103640 (2021).
Pang, P. et al. Deep-blue light-emitting diodes constructed with perovskite quasi-2D and nanocrystal mixtures. Adv. Opt. Mater. 10, 2201112 (2022).
Dong, J. et al. Perovskite light-emitting diodes with low roll-off efficiency via interfacial ionic immobilization. Chem. Eng. J. 429, 132347 (2022).
Hu, W. et al. High open-circuit voltage of 1.134 V for inverted planar perovskite solar cells with sodium citrate-doped PEDOT:PSS as a hole transport layer. ACS Appl. Mater. Interfaces 11, 22021–22027 (2019).
Dong, J. et al. Deep-blue electroluminescence of perovskites with reduced dimensionality achieved by manipulating adsorption-energy differences. Angew. Chem. Int. Ed. 61, e202210322 (2022).
Tress, W. et al. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015).
Li, C., Guerrero, A., Huettner, S. & Bisquert, J. Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence. Nat. Commun. 9, 5113 (2018).
Wang, H. et al. A multi-functional molecular modifier enabling efficient large-area perovskite light-emitting diodes. Joule 4, 1977–1987 (2020).
Chen, W. et al. Highly bright and stable single-crystal perovskite light-emitting diodes. Nat. Photon. 17, 401–407 (2023).
Wu, K. et al. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys. Chem. Chem. Phys. 16, 22476–22481 (2014).
Elbohy, H. et al. Tuning hole transport layer using urea for high-performance perovskite solar cells. Adv. Funct. Mater. 29, 1806740 (2018).
Wang, H. et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 10, 665 (2019).
Liu, Y. et al. A multifunctional additive strategy enables efficient pure-blue perovskite light-emitting diodes. Adv. Mater. 35, 2302161 (2023).
Liu, Y. et al. Spectral stable blue-light-emitting diodes via asymmetric organic diamine based Dion–Jacobson perovskites. J. Am. Chem. Soc. 143, 19711–19718 (2021).
Kong, L. et al. Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nat. Commun. 12, 1246 (2021).
Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).
Kuang, C. et al. Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes. Joule 5, 618–630 (2021).
Li, N. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019).