terça-feira, dezembro 3, 2024
HomeNanotechnologyMultifunctional nanoplatform with near-infrared triggered nitric-oxide release for enhanced tumor ferroptosis |...

Multifunctional nanoplatform with near-infrared triggered nitric-oxide release for enhanced tumor ferroptosis | Journal of Nanobiotechnology


  • Yang H, Yao X, Liu Y, Shen X, Li M, Luo Z. Ferroptosis nanomedicine: clinical challenges and opportunities for modulating tumor metabolic and immunological landscape. ACS Nano. 2023;17:15328–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou Y, Henry WS, Ricq EL, Graham ET, Phadnis VV, Maretich P, Paradkar S, Boehnke N, Deik AA, Reinhardt F, et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature. 2020;585:603–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang C, Zhang X, Yang M, Dong X. Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 2019;31:e1904197.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu P, Pu YY, Wang M, Wu WC, Qin HL, Shi JL. MnOOH-catalyzed autoxidation of glutathione for reactive oxygen species production and nanocatalytic tumor innate immunotherapy. J Am Chem Soc. 2023;145:5803–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li SL, Chu X, Dong HL, Hou HY, Liu Y. Recent advances in augmenting Fenton chemistry of nanoplatforms for enhanced chemodynamic therapy. Coordin Chem Rev. 2023;479:215004.

    Article 
    CAS 

    Google Scholar
     

  • Zheng JS, Conrad M. The metabolic underpinnings of ferroptosis. Cell Metab. 2020;32:920–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang DG, Minikes AM, Jiang XJ. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 2022;82:2215–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu XY, Wu JB, Liu RX, Xiang HD, Zhang WQ, Chang QC, Wang SS, Jiang R, Zhao F, Li QQ, et al. Engineering single-atom iron nanozymes with radiation-enhanced self-cascade catalysis and self-supplied H2O2 for radio- enzymatic therapy. ACS Nano. 2022;16:18849–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang ZR, Yang CY, Yang D, Zhang Y, Yang QZ, Qu FY, Guo W. L-arginine-modified CoWO4/FeWO4 S-Scheme heterojunction enhances ferroptosis against solid tumor. Adv Healthc Mater. 2023;12:e2203092.

    Article 
    PubMed 

    Google Scholar
     

  • Fan Q, Xiong W, Zhou H, Yang J, Feng J, Li Z, Wu L, Hu F, Duan X, Li B, et al. An AND logic gate for magnetic-resonance-imaging-guided ferroptosis therapy of tumors. Adv Mater. 2023;35:e2305932.

    Article 
    PubMed 

    Google Scholar
     

  • Yang J, Feng J, Yang S, Xu Y, Shen Z. Exceedingly small magnetic iron oxide nanoparticles for T(1) -weighted magnetic resonance imaging and imaging-guided therapy of tumors. Small. 2023;19:e2302856.

    Article 
    PubMed 

    Google Scholar
     

  • Li YL, Wang XL, Ding BB, He C, Zhang C, Li JT, Wang HN, Li ZB, Wang G, Wang YW, et al. Synergistic Apoptosis-Ferroptosis: oxaliplatin loaded amorphous iron oxide nanoparticles for high-efficiency therapy of orthotopic pancreatic cancer and CA19-9 levels decrease. Chem Eng J. 2023;464:142690.

    Article 
    CAS 

    Google Scholar
     

  • Du JH, Zhou MT, Chen Q, Tao YC, Ren J, Zhang Y, Qin HL. Disrupting intracellular iron homeostasis by engineered metal-organic framework for nanocatalytic tumor therapy in synergy with autophagy amplification-promoted ferroptosis. Adv Funct Mater. 2023;33:2215244.

    Article 
    CAS 

    Google Scholar
     

  • Kudarha R, Dhas N, Mutalik S. Distinct features of iron based metal organic frameworks (MOFs) for ferroptosis mediated cancer therapy: a comprehensive review. Coordin Chem Rev. 2023;494:215330.

    Article 
    CAS 

    Google Scholar
     

  • Xie WS, Guo ZH, Zhao LY, Wei Y. Metal-phenolic networks: facile assembled complexes for cancer theranostics. Theranostics. 2021;11:6407–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Zhou Y, Liu J, Yang X, Zhang K, Lei L, Hu H, Zhang H, Ouyang L, Gao H. Metal-phenolic networks with ferroptosis to deliver NIR-responsive CO for synergistic therapy. J Control Release. 2022;352:313–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shan X, Li S, Sun B, Chen Q, Sun J, He Z, Luo C. Ferroptosis-driven nanotherapeutics for cancer treatment. J Control Release. 2020;319:322–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang WX, Li Y, Ke D, Gao YR, Fei T, Wang GQ, Shu Y, Wang JH. GSH-depleting metal-polyphenol-network nanoparticles with dual enzyme activities induce enhanced ferroptosis. Biomater Sci. 2023;11:6906–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Fan WZ, Gu X, Liu SP, He TT, Gou SQ, Meng WL, Li M, Liu XH, Ren Y et al. Biodegradable ferric phosphate nanocarriers with tumor-specific activation and glutathione depletion for tumor self-enhanced ferroptosis and chemotherapy. Adv Funct Mater. 2024; 2313540.

  • Gao D, Asghar S, Hu RF, Chen S, Niu RX, Liu J, Chen ZP, Xiao YY. Recent advances in diverse nanosystems for nitric oxide delivery in cancer therapy. Acta Pharm Sin B. 2023;13:1498–521.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao ZQ, Shan XZ, Zhang HY, Shi XB, Huang PQ, Sun J, He ZG, Luo C, Zhang SW. Nitric oxide-driven nanotherapeutics for cancer treatment. J Control Release. 2023;362:151–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Y, Xie HL, Li YP, Bao XY, Lu GL, Wen JY, Gao Y, Li YP, Zhang ZW. Nitric oxide-loaded bioinspired lipoprotein normalizes tumor vessels to improve intratumor delivery and chemotherapy of albumin-bound paclitaxel nanoparticles. Nano Lett. 2023;23:939–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen LW, Liu HY, Hu C, Wei ZX, Meng Y, Lu CX, Su YH, Lu LG, Liang H, Xu QB, et al. Thermoacoustic imaging-guided thermo-chemotherapy for hepatocellular carcinoma sensitized by a microwave-responsive nitric oxide nanogenerator. ACS Appl Mater Interfaces. 2023;15:10477–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu WJ, Jia F, Fu JZ, Chen YH, Huang Y, Jin Q, Wang YX, Ji J. Enhanced transcutaneous chemodynamic therapy for melanoma treatment through cascaded Fenton-like reactions and nitric oxide delivery. ACS Nano. 2023;17:15713–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He M, Song YY, Xu W, Zhang XL, Dong CM. Four birds with one stone: a multifunctional polypeptide nanocomposite to unify ferroptosis, nitric oxide, and photothermia for amplifying antitumor immunity. Adv Funct Mater. 2023;33:2304216.

    Article 
    CAS 

    Google Scholar
     

  • Wang CY, Tian G, Yu X, Zhang X. Recent advances in functional nanomaterials for catalytic generation of nitric oxide: a mini review. Small. 2023;19:e2207261.

    Article 
    PubMed 

    Google Scholar
     

  • Yu J, Zhang RL, Chen BH, Liu XL, Jia Q, Wang XF, Yang Z, Ning PB, Wang ZL, Yang Y. Injectable reactive oxygen species-responsive hydrogel dressing with sustained nitric oxide release for bacterial ablation and wound healing. Adv Funct Mater. 2022;32:2202857.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Tang QS, Wu RQ, Sun SH, Zhang JX, Chen J, Gong M, Chen CY, Liang XL. Ultrasound-triggered piezocatalysis for selectively controlled NO gas and chemodrug release to enhance drug penetration in pancreatic cancer. ACS Nano. 2023;17:3557–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi H, Xiong CF, Zhang LJ, Cao HC, Wang R, Pan P, Guo HY, Liu T. Light-triggered nitric oxide nanogenerator with high L-arginine loading for synergistic photodynamic/gas/photothermal therapy. Adv Healthc Mater. 2023;12:e2300012.

    Article 
    PubMed 

    Google Scholar
     

  • Li G, Lu X, Zhang S, Zhang J, Fu X, Zhang M, Teng L, Sun F. Multi-enzyme cascade-triggered nitric oxide release nanoplatform combined with chemo starvation-like therapy for multidrug-resistant cancers. ACS Appl Mater Interfaces. 2023;15:31285–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Li JY, Roy S, Ullah Z, Gu JS, Huang HY, Yu C, Wang XJ, Wang H, Zhang YH et al. Development of polymethine dyes for NIR-II fluorescence imaging and therapy. Adv Healthc Mater. 2024:e2304506.

  • Liang JT, Li L, Tian HL, Wang ZH, Liu GW, Duan XR, Guo MW, Liu JQ, Zhang W, Nice EC, et al. Drug repurposing-based brain-targeting self-assembly nanoplatform using enhanced ferroptosis against glioblastoma. Small. 2023;19:e2303073.

    Article 
    PubMed 

    Google Scholar
     

  • Wang K, Jiang L, Qiu L. Near infrared light triggered ternary synergistic cancer therapy via L-arginine-loaded nanovesicles with modification of PEGylated indocyanine green. Acta Biomater. 2022;140:506–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prince Y, Hiremath N, Vankayala R. Near-infrared light activatable niosomes loaded with indocyanine green and plasmonic gold nanorods for theranostic applications. Biomater Sci. 2023;11:7759–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu H, Wang C, Sun J, Sun L, Wan J, Wang S, Gu D, Yu C, Yang C, He J, et al. Self-assembled and self-monitored sorafenib/indocyanine green nanodrug with synergistic antitumor activity mediated by hyperthermia and reactive oxygen species-induced apoptosis. ACS Appl Mater Interfaces. 2019;11:43996–4006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Li H, Meng F, Luo L. Bioadhesive metal-phenolic nanoparticles for enhanced NIR imaging-guided locoregional photothermal/antiangiogenic therapy. J Mater Chem B. 2021;9:4710–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Hu H, Yang H, Li Z. Hydroxyethyl starch based smart nanomedicine. RSC Adv. 2021;11:3226–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Zhang Z, Li Y, Zeng H, Li Z, Wang C, Xu C, Deng Q, Wang Q, Yang X, et al. Precise fibrin decomposition and tumor mechanics modulation with hydroxyethyl starch-based smart nanomedicine for enhanced antitumor efficacy. J Mater Chem B. 2022;10:8193–210.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aparecida Stahl M, Luisa Ludtke F, Grimaldi R, Lucia Gigante M, Paula Badan Ribeiro A. Characterization and stability of alpha-tocopherol loaded solid lipid nanoparticles formulated with different fully hydrogenated vegetable oils. Food Chem. 2024;439:138149.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Chen C, Zhang Z, Wang D, Lv S. Illustration and application of enhancing effect of arginine on interactions between nano-clays: self-healing hydrogels. Soft Matter. 2019;15:303–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu ZD, Liu SA, Liu B, Bian YL, Yuan M, Yang CZ, Meng Q, Chen CX, Ma PA, Lin J. Fe(III)-naphthazarin metal-phenolic networks for glutathione-depleting enhanced ferroptosis-apoptosis combined cancer therapy. Small. 2023;19:e2207825.

    Article 
    PubMed 

    Google Scholar
     

  • Feng W, Shi W, Wang Z, Cui Y, Shao X, Liu S, Rong L, Liu Y, Zhang H. Enhancing tumor therapy of Fe(III)-shikonin supramolecular nanomedicine via triple ferroptosis amplification. ACS Appl Mater Interfaces. 2022;14:37540–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mo ZM, Li QT, Zhao K, Xu Q, Hu H, Chen X, Luo YX, Chi B, Liu LP, Fang XF, et al. A nanoarchitectonic approach enables triple modal synergistic therapies to enhance antitumor effects. ACS Appl Mater Interfaces. 2022;14:10001–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi H, Wang R, Cao HC, Guo HY, Pan P, Xiong CF, Zhang LJ, Yang Q, Wei S, Liu T. A metal-polyphenol-based oxygen economizer and Fenton reaction amplifier for self-enhanced synergistic photothermal/chemodynamic/chemotherapy. Adv Healthc Mater. 2023;12:e2300054.

    Article 
    PubMed 

    Google Scholar
     

  • Mao GP, Xin DD, Wang Q, Lai DM. Sodium molybdate inhibits the growth of ovarian cancer cells via inducing both ferroptosis and apoptosis. Free Radical Bio Med. 2022;182:79–92.

    Article 
    CAS 

    Google Scholar
     

  • Kagan VE, Mao GW, Qu F, Angeli JPF, Doll S, St Croix C, Dar HH, Liu B, Tyurin VA, Ritov VB, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13:81–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quiroga J, Alarcon P, Manosalva C, Taubert A, Hermosilla C, Hidalgo MA, Carretta MD, Burgos RA. Glycolysis and mitochondrial function regulate the radical oxygen species production induced by platelet-activating factor in bovine polymorphonuclear leukocytes. Vet Immunol Immunopathol. 2020;226:110074.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lahooti B, Akwii RG, Zahra FT, Sajib MS, Lamprou M, Alobaida A, Lionakis MS, Mattheolabakis G, Mikelis CM. Targeting endothelial permeability in the EPR effect. J Control Release. 2023;361:212–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES
    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments