Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).
Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).
Xie, J., Liang, Z. & Lu, Y.-C. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020).
Cao, L. et al. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142, 21404–21409 (2020).
Xu, J. et al. Aqueous electrolyte design for super-stable 2.5 V LiMn2O4 || Li4Ti5O12 pouch cells. Nat. Energy 7, 186–193 (2022).
Yang, C. et al. 4.0 V aqueous Li-ion batteries. Joule 1, 122–132 (2017).
Li, H., Wang, Y., Na, H., Liu, H. & Zhou, H. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. J. Am. Chem. Soc. 131, 15098–15099 (2009).
Wang, Y., He, P. & Zhou, H. A lithium–air capacitor–battery based on a hybrid electrolyte. Energy Environ. Sci. 4, 4994–4999 (2011).
Bai, S., Liu, X., Zhu, K., Wu, S. & Zhou, H. Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 1, 16094 (2016).
Qiao, Y. et al. Advanced hybrid electrolyte Li-O2 battery realized by dual superlyophobic membrane. Joule 3, 2986–3001 (2019).
Yang, S., Zhang, F., Ding, H., He, P. & Zhou, H. Lithium metal extraction from seawater. Joule 2, 1648–1651 (2018).
Chao, D. & Qiao, S.-Z. Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte? Joule 4, 1846–1851 (2020).
Jackson, D. T. & Nelson, P. N. Preparation and properties of some ion selective membranes: a review. J. Mol. Struct. 1182, 241–259 (2019).
Busche, M. R. et al. Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat. Chem. 8, 426–434 (2016).
Scatena, L. F., Brown, M. G. & Richmond, G. L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001).
Benjamin, I. Recombination, dissociation, and transport of ion pairs across the liquid/liquid interface. Implications for phase transfer catalysis. J. Phys. Chem. B 117, 4325–4331 (2013).
Volkov, A. G. in Interfacial Catalysis (ed. Volkov, A. G.) Ch. 1 (CRC Press, 2002).
Shirakawa, S. & Maruoka, K. Recent developments in asymmetric phase-transfer reactions. Angew. Chem. Int. Ed. 52, 4312–4348 (2013).
Suo, L. et al. Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 128, 7252–7257 (2016).
Fakhari, A. R. & Shamsipur, M. An NMR study of the stoichiometry and stability of lithium ion complexes with 12-crown-4, 15-crown-5 and 18-crown-6 in binary acetonitrile-nitrobenzene mixtures. J. Incl. Phenom. Macrocycl. Chem. 26, 243–251 (1996).
Shamsipur, M. & Madrakian, T. Competitive NMR study of the complexation of some alkaline earth and transition metal ions with 12-crown-4, 15-crown-5 and benzo-15-crown-5 in acetonitrile solution using the lithium-7 nucleus as a probe. J. Coord. Chem. 52, 139–149 (2000).
MacFarlane, D. R. et al. On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 11, 4962–4967 (2009).
Morrison, P. W. et al. Crown ethers: novel permeability enhancers for ocular drug delivery? Mol. Pharm. 14, 3528–3538 (2017).
Gierczyk, B., Zalas, M. & Otłowski, T. High-energetic salts and metal complexes: comprehensive overview with a focus on use in homemade explosives (HME). Molecules 29, 5588 (2024).
Betz, J. et al. Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 9, 1803170 (2019).
Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 1–16 (2016).
Chao, D. et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, eaba4098 (2020).
Anuphappharadorn, S., Sukchai, S., Sirisamphanwong, C. & Ketjoy, N. Comparison the economic analysis of the battery between lithium-ion and lead-acid in PV stand-alone application. Energy Procedia 56, 352–358 (2014).
Logan, M. W. et al. UV-cured eutectic gel polymer electrolytes for safe and robust Li-ion batteries. J. Am. Chem. Soc. 8, 8485–8495 (2020).
Zhang, J. et al. “Water-in-salt” polymer electrolyte for Li-ion batteries. Energy Environ. Sci. 13, 2878–2887 (2020).
Meddings, N. et al. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: a review. J. Power Sources 480, 228742 (2020).
Borodin, O. Polarizable force field development and molecular dynamics simulations of ionic liquids. J. Phys. Chem. B 113, 11463–11478 (2009).
Borodin, O. et al. Insights into the structure and transport of the lithium, sodium, magnesium, and zinc bis(trifluoromethansulfonyl)imide salts in ionic liquids. J. Phys. Chem. C. 122, 20108–20121 (2018).
Glaser, R., Borodin, O., Johnson, B., Jhulki, S. & Yushin, G. Minimizing long-chain polysulfide formation in Li-S batteries by using localized low concentration highly fluorinated electrolytes. J. Electrochem. Soc. 168, 090543 (2021).
Murata, J. et al. Vapor pressures of hydrofluoroethers. J. Chem. Eng. Data 47, 911–915 (2002).
Gaussian 16 Rev. C.01. (Gaussian, 2016).
Alvarado, J. et al. Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 12, 780–794 (2019).
Yang, Y. et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule 3, 1986–2000 (2019).
Steinrück, H.-G. et al. Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte. Energy Environ. Sci. 13, 4312–4321 (2020).
Nakayama, Y. Nonlinear dielectric decrement of electrolyte solutions: an effective medium approach. J. Colloid Interface Sci. 646, 354–360 (2023).
Borodin, O. & Smith, G. D. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. J. Phys. Chem. B 113, 1763–1776 (2009).
Tissandier, M. D. et al. The proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J. Phys. Chem. A 102, 7787–7794 (1998).
Kelly, C. P., Cramer, C. J. & Truhlar, D. G. Aqueous solvation free energies of ions and ion–water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J. Phys. Chem. B 110, 16066–16081 (2006).
Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).
Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).
Greg, L., Paolo, T., and Brian, K. rdkit/rdkit: 2022_09_3 (Q3 2022) Release (Release_2022_09_3). Zenodo https://zenodo.org/record/7415128 (2022).