terça-feira, abril 15, 2025
HomeNanotechnologyLi+(ionophore) nanoclusters engineered aqueous/non-aqueous biphasic electrolyte solutions for high-potential lithium-based batteries

Li+(ionophore) nanoclusters engineered aqueous/non-aqueous biphasic electrolyte solutions for high-potential lithium-based batteries


  • Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, J., Liang, Z. & Lu, Y.-C. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, L. et al. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142, 21404–21409 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, J. et al. Aqueous electrolyte design for super-stable 2.5 V LiMn2O4 || Li4Ti5O12 pouch cells. Nat. Energy 7, 186–193 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C. et al. 4.0 V aqueous Li-ion batteries. Joule 1, 122–132 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, H., Wang, Y., Na, H., Liu, H. & Zhou, H. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. J. Am. Chem. Soc. 131, 15098–15099 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y., He, P. & Zhou, H. A lithium–air capacitor–battery based on a hybrid electrolyte. Energy Environ. Sci. 4, 4994–4999 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Bai, S., Liu, X., Zhu, K., Wu, S. & Zhou, H. Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 1, 16094 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Qiao, Y. et al. Advanced hybrid electrolyte Li-O2 battery realized by dual superlyophobic membrane. Joule 3, 2986–3001 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, S., Zhang, F., Ding, H., He, P. & Zhou, H. Lithium metal extraction from seawater. Joule 2, 1648–1651 (2018).

    Article 

    Google Scholar
     

  • Chao, D. & Qiao, S.-Z. Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte? Joule 4, 1846–1851 (2020).

    Article 

    Google Scholar
     

  • Jackson, D. T. & Nelson, P. N. Preparation and properties of some ion selective membranes: a review. J. Mol. Struct. 1182, 241–259 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Busche, M. R. et al. Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat. Chem. 8, 426–434 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scatena, L. F., Brown, M. G. & Richmond, G. L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benjamin, I. Recombination, dissociation, and transport of ion pairs across the liquid/liquid interface. Implications for phase transfer catalysis. J. Phys. Chem. B 117, 4325–4331 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Volkov, A. G. in Interfacial Catalysis (ed. Volkov, A. G.) Ch. 1 (CRC Press, 2002).

  • Shirakawa, S. & Maruoka, K. Recent developments in asymmetric phase-transfer reactions. Angew. Chem. Int. Ed. 52, 4312–4348 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Suo, L. et al. Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 128, 7252–7257 (2016).

    Article 

    Google Scholar
     

  • Fakhari, A. R. & Shamsipur, M. An NMR study of the stoichiometry and stability of lithium ion complexes with 12-crown-4, 15-crown-5 and 18-crown-6 in binary acetonitrile-nitrobenzene mixtures. J. Incl. Phenom. Macrocycl. Chem. 26, 243–251 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Shamsipur, M. & Madrakian, T. Competitive NMR study of the complexation of some alkaline earth and transition metal ions with 12-crown-4, 15-crown-5 and benzo-15-crown-5 in acetonitrile solution using the lithium-7 nucleus as a probe. J. Coord. Chem. 52, 139–149 (2000).

    Article 
    CAS 

    Google Scholar
     

  • MacFarlane, D. R. et al. On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 11, 4962–4967 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morrison, P. W. et al. Crown ethers: novel permeability enhancers for ocular drug delivery? Mol. Pharm. 14, 3528–3538 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gierczyk, B., Zalas, M. & Otłowski, T. High-energetic salts and metal complexes: comprehensive overview with a focus on use in homemade explosives (HME). Molecules 29, 5588 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Betz, J. et al. Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 9, 1803170 (2019).

    Article 

    Google Scholar
     

  • Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 1–16 (2016).

    Article 

    Google Scholar
     

  • Chao, D. et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, eaba4098 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anuphappharadorn, S., Sukchai, S., Sirisamphanwong, C. & Ketjoy, N. Comparison the economic analysis of the battery between lithium-ion and lead-acid in PV stand-alone application. Energy Procedia 56, 352–358 (2014).

    Article 

    Google Scholar
     

  • Logan, M. W. et al. UV-cured eutectic gel polymer electrolytes for safe and robust Li-ion batteries. J. Am. Chem. Soc. 8, 8485–8495 (2020).

    CAS 

    Google Scholar
     

  • Zhang, J. et al. “Water-in-salt” polymer electrolyte for Li-ion batteries. Energy Environ. Sci. 13, 2878–2887 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Meddings, N. et al. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: a review. J. Power Sources 480, 228742 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Borodin, O. Polarizable force field development and molecular dynamics simulations of ionic liquids. J. Phys. Chem. B 113, 11463–11478 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borodin, O. et al. Insights into the structure and transport of the lithium, sodium, magnesium, and zinc bis(trifluoromethansulfonyl)imide salts in ionic liquids. J. Phys. Chem. C. 122, 20108–20121 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Glaser, R., Borodin, O., Johnson, B., Jhulki, S. & Yushin, G. Minimizing long-chain polysulfide formation in Li-S batteries by using localized low concentration highly fluorinated electrolytes. J. Electrochem. Soc. 168, 090543 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Murata, J. et al. Vapor pressures of hydrofluoroethers. J. Chem. Eng. Data 47, 911–915 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Gaussian 16 Rev. C.01. (Gaussian, 2016).

  • Alvarado, J. et al. Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 12, 780–794 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule 3, 1986–2000 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Steinrück, H.-G. et al. Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte. Energy Environ. Sci. 13, 4312–4321 (2020).

    Article 

    Google Scholar
     

  • Nakayama, Y. Nonlinear dielectric decrement of electrolyte solutions: an effective medium approach. J. Colloid Interface Sci. 646, 354–360 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borodin, O. & Smith, G. D. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. J. Phys. Chem. B 113, 1763–1776 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tissandier, M. D. et al. The proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J. Phys. Chem. A 102, 7787–7794 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Kelly, C. P., Cramer, C. J. & Truhlar, D. G. Aqueous solvation free energies of ions and ion–water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J. Phys. Chem. B 110, 16066–16081 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greg, L., Paolo, T., and Brian, K. rdkit/rdkit: 2022_09_3 (Q3 2022) Release (Release_2022_09_3). Zenodo https://zenodo.org/record/7415128 (2022).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments