quinta-feira, abril 3, 2025
HomeNanotechnologyInvestigating the effect of heterogeneities across the electrode|multiphase polymer electrolyte interfaces in...

Investigating the effect of heterogeneities across the electrode|multiphase polymer electrolyte interfaces in high-potential lithium batteries


  • Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 1–16 (2017).

    Article 

    Google Scholar
     

  • Wan, J. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choudhury, S. Solid-state polymer electrolytes for high-performance lithium metal batteries. Nat. Commun. 10, 4398 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christie, A. M., Lilley, S. J., Staunton, E., Andreev, Y. G. & Bruce, P. G. Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50–53 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, T. et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 11, 1197–1203 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Q., Liu, X., Stalin, S., Khan, K. & Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hatzell, K. B. et al. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett. 5, 922–934 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv. Mater. 32, 1905219 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Glynos, E., Pantazidis, C. & Sakellariou, G. Designing all-polymer nanostructured solid electrolytes: advances and prospects. ACS Omega 5, 2531–2540 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, G. et al. Trade-offs between ion-conducting and mechanical properties: the case of polyacrylate electrolytes. Carbon Energy 5, e287 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gu, Y. et al. High toughness, high conductivity ion gels by sequential triblock copolymer self-assembly and chemical cross-linking. J. Am. Chem. Soc. 135, 9652–9655 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, B. K., Jain, A., Gruner, S. M. & Wiesner, U. Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 305, 1598–1601 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grundy, L. S. et al. Inaccessible polarization-induced phase transitions in a block copolymer electrolyte: an unconventional mechanism for the limiting current. Macromolecules 55, 7637–7649 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Galluzzo, M. D., Loo, W. S., Schaible, E., Zhu, C. & Balsara, N. P. Dynamic structure and phase behavior of a block copolymer electrolyte under dc polarization. ACS Appl. Mater. Interfaces 12, 57421–57430 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Virgili, J. M., Nedoma, A. J., Segalman, R. A. & Balsara, N. P. Ionic liquid distribution in ordered block copolymer solutions. Macromolecules 43, 3750–3756 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Gomez, E. D. et al. Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett. 9, 1212–1216 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, J. H., Ye, Y., Elabd, Y. A. & Winey, K. I. Network structure and strong microphase separation for high ion conductivity in polymerized ionic liquid block copolymers. Macromolecules 46, 5290–5300 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Koerver, R. et al. Chemo-mechanical expansion of lithium electrode materials—on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 11, 2142–2158 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, J. A. et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett. 4, 591–599 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, J. A. et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 20, 503–510 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tippens, J. et al. Visualizing chemomechanical degradation of a solid-state battery electrolyte. ACS Energy Lett. 4, 1475–1483 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, J. A., Tippens, J., Cortes, F. J. Q. & McDowell, M. T. Chemo-mechanical challenges in solid-state batteries. Trends Chem. 1, 845–857 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sharon, D. et al. Molecular level differences in ionic solvation and transport behavior in ethylene oxide-based homopolymer and block copolymer electrolytes. J. Am. Chem. Soc. 143, 3180–3190 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chintapalli, M. et al. Structure and ionic conductivity of polystyrene-block-poly(ethylene oxide) electrolytes in the high salt concentration limit. Macromolecules 49, 1770–1780 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shen, K. H. & Hall, L. M. Ion conductivity and correlations in model salt-doped polymers: effects of interaction strength and concentration. Macromolecules 53, 3655–3668 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Y., Ma, B. & Bai, P. Overlimiting ion transport dynamic toward Sand’s time in solid polymer electrolytes. Mater. Today Energy 27, 101037 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Y., Ma, B. & Bai, P. Concentration polarization and metal dendrite initiation in isolated electrolyte microchannels. Energy Environ. Sci. 13, 3504–3513 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, Q. et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy. Nat. Commun. 9, 2942 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devaux, D. et al. Failure mode of lithium metal batteries with a block copolymer electrolyte analyzed by X-ray microtomography. J. Electrochem. Soc. 162, A1301–A1309 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kaboli, S. et al. Behavior of solid electrolyte in Li-polymer battery with NMC cathode via in-situ scanning electron microscopy. Nano Lett. 20, 1607–1613 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Golozar, M. et al. In situ scanning electron microscopy detection of carbide nature of dendrites in Li-polymer batteries. Nano Lett. 18, 7583–7589 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maslyn, J. A. et al. Growth of lithium dendrites and globules through a solid block copolymer electrolyte as a function of current density. J. Phys. Chem. C 122, 26797–26804 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Harry, K. J., Liao, X., Parkinson, D. Y., Minor, A. M. & Balsara, N. P. Electrochemical deposition and stripping behavior of lithium metal across a rigid block copolymer electrolyte membrane. J. Electrochem. Soc. 162, A2699–A2706 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Andersson, E. K. W. et al. Early-stage decomposition of solid polymer electrolytes in Li-metal batteries. J. Mater. Chem. A 9, 22462–22471 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Multi-scale characterization techniques for polymer-based solid-state lithium batteries. Macromol. Chem. Phys. 224, 2200351 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bostwick, J. E. et al. Ionic interactions control the modulus and mechanical properties of molecular ionic composite electrolytes. J. Mater. Chem. C 10, 947–957 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yu, D. et al. Room temperature to 150 °C lithium metal batteries enabled by a rigid molecular ionic composite electrolyte. Adv. Energy Mater. 11, 2003559 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fox, R. J. et al. Nanofibrillar ionic polymer composites enable high-modulus ion-conducting membranes. ACS Appl. Mater. Interfaces 11, 40551–40563 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Highly conductive and thermally stable ion gels with tunable anisotropy and modulus. Adv. Mater. 28, 2571–2578 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bostwick, J. E. et al. Ion transport and mechanical properties of non-crystallizable molecular ionic composite electrolytes. Macromolecules 53, 1405–1414 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater. 20, 1255–1263 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. Double helical conformation and extreme rigidity in a rodlike polyelectrolyte. Nat. Commun. 10, 801 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Z., He, Y., Wang, Y., Madsen, L. A. & Qiao, R. Molecular structure and dynamics of ionic liquids in a rigid-rod polyanion-based ion gel. Langmuir 33, 322–331 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forsyth, M., Porcarelli, L., Wang, X., Goujon, N. & Mecerreyes, D. Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc. Chem. Res. 52, 686–694 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hasanpoor, M. et al. Morphological evolution and solid-electrolyte interphase formation on LiNi0.6Mn0.2Co0.2O2 cathodes using highly concentrated ionic liquid electrolytes. ACS Appl. Mater. Interfaces 14, 13196–13205 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, D., Zanelotti, C. J., Fox, R. J., Dingemans, T. J. & Madsen, L. A. Solvent-cast solid electrolyte membranes based on a charged rigid-rod polymer and ionic liquids. ACS Appl. Energy Mater. 4, 6599–6605 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dong, Q. et al. Insights into the dual role of lithium difluoro(oxalato)borate additive in improving the electrochemical performance of NMC811||graphite cells. ACS Appl. Energy Mater. 3, 695–704 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gao, H., Maglia, F., Lamp, P., Amine, K. & Chen, Z. Mechanistic study of electrolyte additives to stabilize high-voltage cathode-electrolyte interface in lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 44542–44549 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swiderska-Mocek, A. & Gabryelczyk, A. Interfacial stabilizing effect of lithium borates and pyrrolidinium ionic liquid in gel polymer electrolytes for lithium-metal batteries. J. Phys. Chem. C 127, 18875–18890 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yu, X. et al. Direct observation of the redistribution of sulfur and polysulfides in Li-S batteries during first cycle by in situ X-ray fluorescence microscopy. Adv. Energy Mater. 5, 1500072 (2015).

    Article 

    Google Scholar
     

  • Freiberg, A. T. S. et al. Species in lithium-sulfur batteries using spatially resolved operando X-ray absorption spectroscopy and X-ray fluorescence mapping. J. Phys. Chem. C 122, 5303–5316 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sun, B. et al. At the polymer electrolyte interfaces: the role of the polymer host in interphase layer formation in Li-batteries. J. Mater. Chem. A 3, 13994–14000 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Vairavamurthy, A. Using X-ray absorption to probe sulfur oxidation states in complex molecules. Spectrochim. Acta A 54, 2009–2017 (1998).

    Article 

    Google Scholar
     

  • Lin, Z. et al. High-performance lithium/sulfur cells with a bi-functionally immobilized sulfur cathode. Nano Energy 9, 408–416 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pickering, I. J., Prince, R. C., Divers, T. & George, G. N. Sulfur K-edge X-ray absorption spectroscopy for determining the chemical speciation of sulfur in biological systems. FEBS Lett. 441, 11–14 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dey, A. et al. Sulfur K-edge XAS and DFT calculations on nitrile hydratase: geometric and electronic structure of the non-heme iron active site. J. Am. Chem. Soc. 128, 533–541 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dezarnaud, C., Tronc, M. & Hitchcock, A. P. Inner shell spectroscopy of the carbon—sulfur bond. Chem. Phys. 142, 455–462 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Jalilehvand, F. Sulfur: not a “silent” element any more. Chem. Soc. Rev. 35, 1256–1268 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments