terça-feira, janeiro 14, 2025
HomeNanotechnologyFully recyclable carbon nanotube fibers have far-reaching implications for manufacturing across sectors

Fully recyclable carbon nanotube fibers have far-reaching implications for manufacturing across sectors


Researchers unveil 'surprising' breakthrough in carbon nanotube recycling, paving way for sustainable materials
Credit: Carbon (2024). DOI: 10.1016/j.carbon.2024.119899

In a significant step toward creating a sustainable and circular economy, Rice University researchers have published a study in the journal Carbon demonstrating that carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. This discovery positions CNT fibers as a sustainable alternative to traditional materials like metals, polymers and the much larger carbon fibers, which are notoriously difficult to recycle.

“Recycling has long been a challenge in the materials industry—metals recycling is often inefficient and energy-intensive, polymers tend to lose their properties after reprocessing and carbon fibers cannot be recycled at all, only downcycled by chopping them up into short pieces,” said corresponding author Matteo Pasquali, director of Rice’s Carbon Hub and the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering and Chemistry.

“As CNT fibers are being scaled up, we asked whether and how these new materials could be recycled in the future so as to proactively avoid waste management problems that emerged as other engineered materials reached large-scale use. We expected that recycling would be difficult and would lead to significant loss of properties. Surprisingly, we found that fibers far exceed the recyclability potential of existing engineered materials, offering a solution to a major environmental issue.”






Credit: Rice University

The research team used solution-spun CNT fibers created by dissolving fiber-grade commercial CNTs in chlorosulfonic acid, a widely used industrial solvent. Because end-of-life recycling invariably brings together materials that were manufactured by different companies in different processes, it was important to assess the effect of multiple material sources on the fiber manufacturing process and fiber properties.

Fibers made from different types of CNTs produced by different manufacturers were initially processed into separate single-source virgin fibers, then recycled by combining them and mixing in chlorosulfonic acid. Surprisingly, mixing the two fibers led to complete redissolution and no sign of separation of the two source materials into different liquid phases. This redissolved material was spun into a mixed-source recycled fiber that retained the same structure and alignment of the virgin fiber.

“By using two different sources of carbon nanotubes, we ensured that our was representative of real-life conditions,” said co-first author Michelle Durán-Chaves, a graduate student in chemistry. “Remarkably, the recycled fibers demonstrated equivalent mechanical strength, electrical conductivity, thermal conductivity and alignment, which is unprecedented in the field of engineered materials.”







Rice researchers unveil ‘surprising’ breakthrough in carbon nanotube recycling, paving way for sustainable materials. Credit: Brandon Martin/Rice University.

The research revealed several significant findings that position CNT fibers as a promising material in the journey toward . Foremost among these is the full recyclability of CNT fibers. Unlike traditional materials, particularly polymers and that degrade in quality during recycling, CNT fibers retain 100% of their original properties after being recycled.

“This preservation of quality means CNT fibers can be used and reused in demanding applications without compromising performance, thus extending their lifecycle and reducing the need for new raw materials,” said co-first author Ivan R. Siqueira, a recent doctoral graduate in Rice’s Department of Chemical and Biomolecular Engineering who is now associate professor of mechanical engineering at the Pontifícia Universidade Católica in Rio de Janeiro.

Equally significant is the efficiency of the recycling process. The researchers demonstrated that CNT fiber recycling is notably more efficient than traditional recycling methods for metals and polymers, which often involve high energy use, hazardous chemicals or labor-intensive sorting.

CNT fibers, however, can be recycled without sorting as fibers from various sources can be combined to produce high-quality recycled materials. Once these materials reach scale, this simple recycling process will significantly reduce waste, energy consumption and carbon dioxide emissions associated with materials manufacturing.

“The ability to fully recycle CNT fibers has broad implications for industries like aerospace, automotive and electronics,” Durán-Chaves said. “We hope this could pave the way for fully recyclable composites in aircraft, vehicles, civil infrastructures and more, ultimately reducing environmental impacts across a wide range of sectors.”

Other co-authors of the paper include Rice graduate alumni Oliver Dewey, now of DexMat; Steven Williams; Cedric Ginestra, now of LyondellBasell; Yingru Song, now a postdoctoral fellow at Purdue University; Rice undergraduate alumnus Juan De La Garza, now of Axiom Space; and Geoff Wehmeyer, assistant professor of mechanical engineering.

More information:
Ivan R. Siqueira et al, Fully recyclable carbon nanotube fibers, Carbon (2024). DOI: 10.1016/j.carbon.2024.119899

Provided by
Rice University


Citation:
Fully recyclable carbon nanotube fibers have far-reaching implications for manufacturing across sectors (2025, January 13)
retrieved 14 January 2025
from https://phys.org/news/2025-01-fully-recyclable-carbon-nanotube-fibers.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -
Google search engine

Most Popular

Recent Comments