quinta-feira, janeiro 9, 2025
HomeNanotechnologyFerrimagnetic Heusler tunnel junctions with fast spin-transfer torque switching enabled by low...

Ferrimagnetic Heusler tunnel junctions with fast spin-transfer torque switching enabled by low magnetization


  • Release, S. P. Samsung reveals eMRAM and BCD roadmap while pushing automotive chip down to 2 nm. https://www.digitimes.com/news/a20231020PD215/automotive-ic-ev-memory-chips-samsung.html (2023).

  • Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mangin, S. et al. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 5, 210 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Meng, H. & Wang, J.-P. Spin transfer in nanomagnetic devices with perpendicular anisotropy. Appl. Phys. Lett. 88, 172506 (2006).

    Article 

    Google Scholar
     

  • Worledge, D. et al. Spin torque switching of perpendicular Ta|CoFeB|MgO-based magnetic tunnel junctions. Appl. Phys. Lett. 98, 022501 (2011).

    Article 

    Google Scholar
     

  • Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, J. Z. Spin-current interaction with a monodomain magnetic body: a model study. Phys. Rev. B 62, 570–578 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Yamada, K., Oomaru, K., Nakamura, S., Sato, T. & Nakatani, Y. Reducing the switching current with a Gilbert damping constant in nanomagnets with perpendicular anisotropy. Appl. Phys. Lett. 106, 042402 (2015).

    Article 

    Google Scholar
     

  • Takeuchi, Y. et al. Nanometer-thin L10-MnAl film with B2-CoAl underlayer for high-speed and high-density STT-MRAM: structure and magnetic properties. Appl. Phys. Lett. 120, 052404 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Belmeguenai, M. et al. Exchange stiffness and damping constants in diluted CoxFeyB1−x−y thin films. J. Phys. D 50, 415003 (2017).

    Article 

    Google Scholar
     

  • Aharoni, A. Introduction to the Theory of Ferromagnetism (Oxford Univ. Press, 2001).

  • Sala, G. & Gambardella, P. Ferrimagnetic dynamics induced by spin-orbit torques. Adv. Mater. Int. 9, 2201622 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. K. et al. Ferrimagnetic spintronics. Nat. Mater. 21, 24–34 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hansen, P., Clausen, C., Much, G., Rosenkranz, M. & Witter, K. Magnetic and magneto-optical properties of rare-earth transition-metal alloys containing Gd, Tb, Fe, Co. J. Appl. Phys. 66, 756–767 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. J. & Leng, Q. W. Thermal stability and the origin of perpendicular anisotropy in amorphous Tb-Fe-Co films. Phys. Rev. B 41, 651–657 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Wang, K., Tang, Y., Zhang, K., Wang, Y. & Liu, J. Thermal degradation behavior of amorphous GdFeCo alloy films with perpendicular anisotropy. Mater. Sci. Eng. B 263, 114848 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Krén, E. & Kádár, G. Neutron diffraction study of Mn3Ga. Solid State Commun. 8, 1653–1655 (1970).

    Article 

    Google Scholar
     

  • Kádár, G. & Krén, E. Neutron diffraction study of Mn3Ge. Int. J. Magn. 1, 143–148 (1971).


    Google Scholar
     

  • Faleev, S. V. et al. Origin of the tetragonal ground state of Heusler compounds. Phys. Rev. A 7, 034022 (2017).

    Article 

    Google Scholar
     

  • Hirohata, A., Frost, W., Samiepour, M. & Kim, J.-Y. Perpendicular magnetic anisotropy in Heusler alloy films and their magnetoresistive junctions. Materials 11, 105 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong, J. et al. Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy. Nat. Commun. 7, 10276 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graf, T., Felser, C. & Parkin, S. S. P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1–50 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Faleev, S. V. et al. Heusler compounds with perpendicular magnetic anisotropy and large tunneling magnetoresistance. Phys. Rev. Mater. 1, 024402 (2017).

    Article 

    Google Scholar
     

  • Sugihara, A., Suzuki, K., Miyazaki, T. & Mizukami, S. Tunnel magnetoresistance in full-epitaxial magnetic tunnel junctions with a top electrode consisting of a perpendicularly magnetized D022-Mn3Ge film. Jpn. J. Appl. Phys. 54, 078002 (2015).

    Article 

    Google Scholar
     

  • Kurt, H. et al. Magnetic and electronic properties of D022-Mn3Ge (001) films. Appl. Phys. Lett. 101, 132410 (2012).

    Article 

    Google Scholar
     

  • Thomas, L. et al. STT-MRAM devices with low damping and moment optimized for LLC applications at 0x nodes. In 2018 IEEE International Electron Devices Meeting (IEDM) 27.3.1–27.3.4 (IEEE, 2018).

  • Hu, G. et al. Spin-transfer torque MRAM with reliable 2 ns writing for last level cache applications. In 2019 IEEE International Electron Devices Meeting (IEDM) 2.6.1–2.6.4 (IEEE, 2019).

  • Filippou, P. C. et al. Chiral domain wall motion in unit-cell thick perpendicularly magnetized Heusler films prepared by chemical templating. Nat. Commun. 9, 4653 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filippou, P. C. et al. Heusler-based synthetic antiferrimagnets. Sci. Adv. 8, eabg2469 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parkin, S. S. P., More, N. & Roche, K. P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr and Fe/Cr. Phys. Rev. Lett. 64, 2304–2307 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parkin, S. S. P. & Mauri, D. Spin-engineering: direct determination of the RKKY far field range function in ruthenium. Phys. Rev. B 44, 7131 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Sun, J. Z. et al. Effect of subvolume excitation and spin-torque efficiency on magnetic switching. Phys. Rev. B 84, 064413 (2011).

    Article 

    Google Scholar
     

  • Thomas, L. et al. Solving the paradox of the inconsistent size dependence of thermal stability at device and chip-level in perpendicular STT-MRAM. In 2015 IEEE International Electron Devices Meeting (IEDM) 26.4.1–26.4.4 (IEEE, 2015).

  • Koch, R. H., Katine, J. A. & Sun, J. Z. Time-resolved reversal of spin-transfer switching in a nanomagnet. Phys. Rev. Lett. 92, 088302 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. & Zhang, S. Thermally assisted magnetization reversal in the presence of a spin-transfer torque. Phys. Rev. B 69, 134416 (2004).

    Article 

    Google Scholar
     

  • Bedau, D. et al. Spin-transfer pulse switching: from the dynamic to the thermally activated regime. Appl. Phys. Lett. 97, 262502 (2010).

    Article 

    Google Scholar
     

  • Slonczewski, J. C. Currents, torques, and polarization factors in magnetic tunnel junctions. Phys. Rev. B 71, 024411 (2005).

    Article 

    Google Scholar
     

  • Sun, J. Z. Spin-transfer torque switched magnetic tunnel junctions in magnetic random access memory. Proc. SPIE https://doi.org/10.1117/12.2238712 (2016).

  • Sato, H. et al. Perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure. Appl. Phys. Lett. https://doi.org/10.1063/1.4736727 (2012).

  • Konoto, M. et al. Effect of MgO cap layer on Gilbert damping of FeB electrode layer in MgO-based magnetic tunnel junctions. Appl. Phys. Express 6, 073002 (2013).

    Article 

    Google Scholar
     

  • Hu, G. et al. STT-MRAM with double magnetic tunnel junctions. In 2015 IEEE International Electron Devices Meeting (IEDM) 26.3.1–26.3.4 (IEEE, 2015).

  • Mizukami, S. et al. Laser-induced THz magnetization precession for a tetragonal Heusler-like nearly compensated ferrimagnet. Appl. Phys. Lett. 108, 012404 (2016).

    Article 

    Google Scholar
     

  • Sato, H. et al. Junction size effect on switching current and thermal stability in CoFeB/MgO perpendicular magnetic tunnel junctions. Appl. Phys. Lett. 99, 042501 (2011).

    Article 

    Google Scholar
     

  • Rehm, L., Wolf, G., Kardasz, B., Pinarbasi, M. & Kent, A. D. Sub-nanosecond spin-torque switching of perpendicular magnetic tunnel junction nanopillars at cryogenic temperatures. Appl. Phys. Lett. 115, 182404 (2019).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments