quarta-feira, abril 23, 2025
HomeNanotechnologyElectrosynthesis of pure urea from pretreated flue gas in a proton-limited environment...

Electrosynthesis of pure urea from pretreated flue gas in a proton-limited environment established in a porous solid-state electrolyte electrolyser


  • Mao, Y. et al. Ambient electrocatalytic synthesis of urea by co-reduction of NO3 and CO2 over graphene-supported In2O3. Chin. Chem. Lett. 35, 108540 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, S. et al. High-efficiency electrosynthesis of urea over bacterial cellulose regulated Pd–Cu bimetallic catalyst. EES Catal. 1, 45–53 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, J., Zhang, Y., Kuruvinashetti, K. & Kornienko, N. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, X., Zhou, X., Jing, Y. & Li, Y. Electrochemical synthesis of urea on MBenes. Nat. Commun. 12, 4080 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. Atomically dispersed bimetallic Fe–Co electrocatalysts for green production of ammonia. Nat. Sustain. 6, 169–179 (2022).

    Article 

    Google Scholar
     

  • Yin, H.-Q. et al. Electrochemical urea synthesis by co-reduction of CO2 and nitrate with FeII-FeIIIOOH@BiVO4 heterostructures. J. Energy Chem. 84, 385–393 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X., Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S.-Z. Mechanism of C–N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation. Nat. Commun. 13, 5471 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y. et al. Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites. Nat. Commun. 14, 4491 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, M. et al. Kinetically matched C–N coupling toward efficient urea electrosynthesis enabled on copper single-atom alloy. Nat. Commun. 14, 6994 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12, 717–724 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Electrocatalytic urea synthesis with 63.5% Faradaic efficiency and 100% N‐selectivity via one‐step C–N coupling. Angew. Chem. Int. Ed. 62, e202305447 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, M. et al. Unveiling electrochemical urea synthesis by co‐activation of CO2 and N2 with Mott–Schottky heterostructure catalysts. Angew. Chem. Int. Ed. 133, 11005–11013 (2021).

    Article 

    Google Scholar
     

  • Yuan, M. et al. Highly selective electroreduction of N2 and CO2 to urea over artificial frustrated Lewis pairs. Energy Environ. Sci. 14, 6605–6615 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Efficient C–N coupling in the direct synthesis of urea from CO2 and N2 by amorphous SbxBi1−xOy clusters. Proc. Natl Acad. Sci. USA 120, e2306841120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paul, S., Sarkar, S., Adalder, A., Banerjee, A. & Ghorai, U. K. Dual metal site-mediated efficient C–N coupling toward electrochemical urea synthesis. J. Mater. Chem. A 11, 13249–13254 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jiao, D. et al. Boosting the efficiency of urea synthesis via cooperative electroreduction of N2 and CO2 on MoP. J. Mater. Chem. A 11, 232–240 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, M. et al. Electrochemical C–N coupling with perovskite hybrids toward efficient urea synthesis. Chem. Sci. 12, 6048–6058 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, M. et al. Artificial frustrated Lewis pairs facilitating the electrochemical N2 and CO2 conversion to urea. Chem. Catal. 2, 309–320 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mukherjee, J. et al. Understanding the site‐selective electrocatalytic co‐reduction mechanism for green urea synthesis using copper phthalocyanine nanotubes. Adv. Funct. Mater. 32, 2200882 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, M. et al. Engineering surface atomic architecture of NiTe nanocrystals toward efficient electrochemical N2 fixation. Adv. Funct. Mater. 30, 2004208 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, M. et al. Host–guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal–organic framework. Energy Environ. Sci. 15, 2084–2095 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, P. et al. Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature 618, 959–966 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. Y. ‘T.’, Sellers, C., Hao, S., Senftle, T. P. & Wang, H. Different distributions of multi-carbon products in CO2 and CO electroreduction under practical reaction conditions. Nat. Catal. 6, 1115–1124 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, P. & Wang, H. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat. Catal. 4, 943–951 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Romiluyi, O., Danilovic, N., Bell, A. T. & Weber, A. Z. Membrane‐electrode assembly design parameters for optimal CO2 reduction. Electrochem. Sci. Adv. 3, e2100186 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Fu, X. et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 379, 707–712 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, X. et al. One-step formation of urea from carbon dioxide and nitrogen using water microdroplets. J. Am. Chem. Soc. 145, 25910–25916 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bell, A. T. A novel strategy for ionomer coating of Ag nanoparticles used for the electrochemical reduction of CO2 to CO in a membrane electrode assembly. Natl Sci. Rev. 11, nwad232 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fan, L., Xia, C., Zhu, P., Lu, Y. & Wang, H. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11, 3633 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, H.-L. et al. Continuously producing highly concentrated and pure acetic acid aqueous solution via direct electroreduction of CO2. J. Am. Chem. Soc. 146, 1144–1152 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdul-Baki, A. A., Teasdale, J. R., Korcak, R., Chitwood, D. J. & Huettel, R. N. Fresh-market tomato production in a low-input alternative system using cover-crop mulch. HortScience 31, 65–69 (1996).

    Article 

    Google Scholar
     

  • Kumar, V., Mills, D. J., Anderson, J. D. & Mattoo, A. K. An alternative agriculture system is defined by a distinct expression profile of select gene transcripts and proteins. Proc. Natl Acad. Sci. USA 101, 10535–10540 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, P. et al. Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Proc. Natl Acad. Sci. USA 118, e2010868118 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, E. J. et al. Cooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworks. Science 369, 392–396 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitt, T. et al. Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity (US Department of Energy, 2022); https://www.osti.gov/biblio/1893822; https://doi.org/10.2172/1893822

  • Skúlason, E. et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Resasco, J. & Bell, A. T. Electrocatalytic CO2 reduction to fuels: progress and opportunities. Trends Chem. 2, 825–836 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tăbăcaru, A. et al. Nickel(ii) and copper(i, ii)-based metal–organic frameworks incorporating an extended tris-pyrazolate linker. CrystEngComm 17, 4992–5001 (2015).

    Article 

    Google Scholar
     

  • Lv, C. et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 4, 868–876 (2021).

    Article 

    Google Scholar
     

  • Huang, J. et al. Single‐product faradaic efficiency for electrocatalytic of CO2 to CO at current density larger than 1.2 A cm−2 in neutral aqueous solution by a single‐atom nanozyme. Angew. Chem. Int. Ed. 61, e202210985 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kar, T., Scheiner, S., Roy, A. K. & Bettinger, H. F. Unusual low-vibrational C=O mode of COOH can distinguish between carboxylated zigzag and armchair single-wall carbon nanotubes. J. Phys. Chem. C 116, 26072–26083 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Giubertoni, G., Sofronov, O. O. & Bakker, H. J. Observation of distinct carboxylic acid conformers in aqueous solution. J. Phys. Chem. Lett. 10, 3217–3222 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan, P. et al. Efficient electrosynthesis of urea over single‐atom alloy with electronic metal support interaction. Angew. Chem. Int. Ed. 63, e202409019 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, W. et al. Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew. Chem. Int. Ed. 63, e202402684 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ramadhany, P. et al. Triggering C‒N coupling on metal oxide nanocomposite for the electrochemical reduction of CO2 and NOx to formamide. Adv. Energy Mater. 14, 2401786 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. cp2k: atomistic simulations of condensed matter systems. WIREs Comput. Mol. Sci. 4, 15–25 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article 
    CAS 

    Google Scholar
     

  • VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments