domingo, janeiro 19, 2025
HomeNanotechnologyBlue lasers using low-toxicity colloidal quantum dots

Blue lasers using low-toxicity colloidal quantum dots


  • Park, Y.-S., Roh, J., Diroll, B. T., Schaller, R. D. & Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 6, 382–401 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geiregat, P. et al. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots. Nat. Mater. 17, 35–42 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whitworth, G. L., Dalmases, M., Taghipour, N. & Konstantatos, G. Solution-processed PbS quantum dot infrared laser with room-temperature tunable emission in the optical telecommunications window. Nat. Photonics 15, 738–742 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, N. et al. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature 617, 79–85 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dang, C. et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotechnol. 7, 335–339 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanghe, I. et al. Optical gain and lasing from bulk cadmium sulfide nanocrystals through bandgap renormalization. Nat. Nanotechnol. 18, 1423–1429 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schäfer, J. et al. Quantum dot microdrop laser. Nano Lett. 8, 1709–1712 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Kazes, M., Lewis, D. Y., Ebenstein, Y., Mokari, T. & Banin, U. Lasing from semiconductor quantum rods in a cylindrical microcavity. Adv. Mater. 14, 317–321 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Kazes, M., Lewis, D. Y. & Banin, U. Method for preparation of semiconductor quantum-rod lasers in a cylindrical microcavity. Adv. Funct. Mater. 14, 957–962 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping. Adv. Mater. 27, 169–175 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duarte, F. J. & Hillman, L. W. Dye Laser Principles: With Applications (Academic Press, 1990).

  • Schmidt, H. & Hawkins, A. R. The photonic integration of non-solid media using optofluidics. Nat. Photonics 5, 598–604 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Jelínková, H. Lasers for Medical Applications: Diagnostics, Therapy and Surgery (Elsevier, 2013).

  • Liu, Y., Li, Y., Gao, K., Zhu, J. & Wu, K. Sub-single-exciton optical gain in lead halide perovskite quantum dots revealed by exciton polarization spectroscopy. J. Am. Chem. Soc. 145, 25864–25873 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooney, R. R., Sewall, S. L., Sagar, D. M. & Kambhampati, P. Gain control in semiconductor quantum dots via state-resolved optical pumping. Phys. Rev. Lett. 102, 127404 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, K., Park, Y.-S., Lim, J. & Klimov, V. I. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 12, 1140–1147 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klimov, V. I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 58, 635–673 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011–1013 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melnychuk, C. & Guyot-Sionnest, P. Multicarrier dynamics in quantum dots. Chem. Rev. 121, 2325–2372 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kambhampati, P., Mack, T. & Jethi, L. Understanding and exploiting the interface of semiconductor nanocrystals for light emissive applications. ACS Photonics 4, 412–423 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schäfer, F. P., Schmidt, W. & Volze, J. Organic dye solution laser. Appl. Phys. Lett. 9, 306–309 (1966).

    Article 

    Google Scholar
     

  • Peterson, O. G., Tuccio, S. A. & Snavely, B. B. CW operation of an organic dye solution laser. Appl. Phys. Lett. 17, 245–247 (1970).

    Article 
    CAS 

    Google Scholar
     

  • Soffer, B. H. & McFarland, B. B. Continuously tunable, narrow‐band organic dye lasers. Appl. Phys. Lett. 10, 266–267 (2004).

    Article 

    Google Scholar
     

  • Shank, C. V. Physics of dye lasers. Rev. Mod. Phys. 47, 649–657 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Kato, K. 3547-Å pumped high-power dye laser in the blue and violet. IEEE J. Quantum Electron. 11, 373–374 (1975).

    Article 

    Google Scholar
     

  • Shen, J., Wang, W. & Zhang, S. Amplification characteristics of a Coumarin 460-based tunable amplifier. IEEE Photon. J. 12, 1–8 (2020).


    Google Scholar
     

  • Azuma, K., Nakagawa, O., Segawa, Y., Aoyagi, Y. & Namba, S. A tunable picosecond UV dye laser pumped by the third harmonic of a Nd:YAG laser. Jpn J. Appl. Phys. 18, 209 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S. et al. Low-threshold amplified spontaneous emission in blue quantum dots enabled by effectively suppressing auger recombination. Adv. Opt. Mater. 9, 2100068 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chan, Y. et al. Blue semiconductor nanocrystal laser. Appl. Phys. Lett. 86, 073102 (2005).

    Article 

    Google Scholar
     

  • Wang, Y., Li, X., Nalla, V., Zeng, H. & Sun, H. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals. Adv. Funct. Mater. 27, 1605088 (2017).

    Article 

    Google Scholar
     

  • Yakunin, S. et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, 8056 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots. J. Phys. Chem. Lett. 10, 3248–3253 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, M. et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 21, 7252–7260 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, A. et al. Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes. Nanoscale 7, 2951–2959 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, X., Zhang, F., Zhang, Y. & Shen, H. Heavy-metal-free blue-emitting ZnSe(Te) quantum dots: synthesis and light-emitting applications. J. Mater. Chem. C 11, 14495–14514 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Z. et al. Broadband tunable optical gain from ecofriendly semiconductor quantum dots with near-half-exciton threshold. Nano Lett. 23, 4032–4038 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Z. et al. Deciphering ultrafast carrier dynamics of eco-friendly ZnSeTe-based quantum dots: toward high-quality blue–green emitters. J. Phys. Chem. Lett. 12, 11931–11938 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, H. et al. Blue lasing from heavy-metal-free colloidal quantum dots. Laser Photonics Rev. 17, 2200557 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kozlov, O. V. et al. Sub–single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity. Science 365, 672–675 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji, B., Koley, S., Slobodkin, I., Remennik, S. & Banin, U. ZnSe/ZnS core/shell quantum dots with superior optical properties through thermodynamic shell growth. Nano Lett. 20, 2387–2395 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Santamaría, F. et al. Suppressed Auger recombination in ‘giant’ nanocrystals boosts optical gain performance. Nano Lett. 9, 3482–3488 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, J., Park, Y.-S. & Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–49 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cragg, G. E. & Efros, A. L. Suppression of Auger processes in confined structures. Nano Lett. 10, 313–317 (2009).

    Article 

    Google Scholar
     

  • Long, Z. et al. The strain effects and interfacial defects of large ZnSe/ZnS core/shell nanocrystals. Small 20, 2306602 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bisschop, S., Geiregat, P., Aubert, T. & Hens, Z. The impact of core/shell sizes on the optical gain characteristics of CdSe/CdS quantum dots. ACS Nano 12, 9011–9021 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rinke, M. & Güsten, H. Optische Aufheller als Laserfarbstoffe. Ber. Bunsenges. Phys. Chem. 90, 439–444 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Htoon, H., Hollingworth, J., Malko, A., Dickerson, R. & Klimov, V. Light amplification in semiconductor nanocrystals: quantum rods versus quantum dots. Appl. Phys. Lett. 82, 4776 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Ahn, N. et al. Optically excited lasing in a cavity-based, high-current-density quantum dot electroluminescent device. Adv. Mater. 35, 2206613 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Casperson, L. W. Threshold characteristics of mirrorless lasers. J. Appl. Phys. 48, 256–262 (1977).

    Article 

    Google Scholar
     

  • Jones, M., Nedeljkovic, J., Ellingson, R. J., Nozik, A. J. & Rumbles, G. Photoenhancement of luminescence in colloidal CdSe quantum dot solutions. J. Phys. Chem. B 107, 11346–11352 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Hines, M. A. & Guyot-Sionnest, P. Bright UV-blue luminescent colloidal ZnSe nanocrystals. J. Phys. Chem. B 102, 3655–3657 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Lin, S. et al. Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Res. 13, 824–831 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jang, E.-P. et al. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl. Mater. Interfaces 11, 46062–46069 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, K. Figures for “Blue laser using low-toxicity quantum dots in liquids”. figshare https://doi.org/10.6084/m9.figshare.26763205 (2024).

  • RELATED ARTICLES
    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments