Park, Y.-S., Roh, J., Diroll, B. T., Schaller, R. D. & Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 6, 382–401 (2021).
Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).
Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).
Geiregat, P. et al. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots. Nat. Mater. 17, 35–42 (2018).
Whitworth, G. L., Dalmases, M., Taghipour, N. & Konstantatos, G. Solution-processed PbS quantum dot infrared laser with room-temperature tunable emission in the optical telecommunications window. Nat. Photonics 15, 738–742 (2021).
Ahn, N. et al. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature 617, 79–85 (2023).
Dang, C. et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotechnol. 7, 335–339 (2012).
Tanghe, I. et al. Optical gain and lasing from bulk cadmium sulfide nanocrystals through bandgap renormalization. Nat. Nanotechnol. 18, 1423–1429 (2023).
Schäfer, J. et al. Quantum dot microdrop laser. Nano Lett. 8, 1709–1712 (2008).
Kazes, M., Lewis, D. Y., Ebenstein, Y., Mokari, T. & Banin, U. Lasing from semiconductor quantum rods in a cylindrical microcavity. Adv. Mater. 14, 317–321 (2002).
Kazes, M., Lewis, D. Y. & Banin, U. Method for preparation of semiconductor quantum-rod lasers in a cylindrical microcavity. Adv. Funct. Mater. 14, 957–962 (2004).
Wang, Y. et al. Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping. Adv. Mater. 27, 169–175 (2015).
Duarte, F. J. & Hillman, L. W. Dye Laser Principles: With Applications (Academic Press, 1990).
Schmidt, H. & Hawkins, A. R. The photonic integration of non-solid media using optofluidics. Nat. Photonics 5, 598–604 (2011).
Jelínková, H. Lasers for Medical Applications: Diagnostics, Therapy and Surgery (Elsevier, 2013).
Liu, Y., Li, Y., Gao, K., Zhu, J. & Wu, K. Sub-single-exciton optical gain in lead halide perovskite quantum dots revealed by exciton polarization spectroscopy. J. Am. Chem. Soc. 145, 25864–25873 (2023).
Cooney, R. R., Sewall, S. L., Sagar, D. M. & Kambhampati, P. Gain control in semiconductor quantum dots via state-resolved optical pumping. Phys. Rev. Lett. 102, 127404 (2009).
Wu, K., Park, Y.-S., Lim, J. & Klimov, V. I. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 12, 1140–1147 (2017).
Klimov, V. I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 58, 635–673 (2007).
Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011–1013 (2000).
Melnychuk, C. & Guyot-Sionnest, P. Multicarrier dynamics in quantum dots. Chem. Rev. 121, 2325–2372 (2021).
Kambhampati, P., Mack, T. & Jethi, L. Understanding and exploiting the interface of semiconductor nanocrystals for light emissive applications. ACS Photonics 4, 412–423 (2017).
Schäfer, F. P., Schmidt, W. & Volze, J. Organic dye solution laser. Appl. Phys. Lett. 9, 306–309 (1966).
Peterson, O. G., Tuccio, S. A. & Snavely, B. B. CW operation of an organic dye solution laser. Appl. Phys. Lett. 17, 245–247 (1970).
Soffer, B. H. & McFarland, B. B. Continuously tunable, narrow‐band organic dye lasers. Appl. Phys. Lett. 10, 266–267 (2004).
Shank, C. V. Physics of dye lasers. Rev. Mod. Phys. 47, 649–657 (1975).
Kato, K. 3547-Å pumped high-power dye laser in the blue and violet. IEEE J. Quantum Electron. 11, 373–374 (1975).
Shen, J., Wang, W. & Zhang, S. Amplification characteristics of a Coumarin 460-based tunable amplifier. IEEE Photon. J. 12, 1–8 (2020).
Azuma, K., Nakagawa, O., Segawa, Y., Aoyagi, Y. & Namba, S. A tunable picosecond UV dye laser pumped by the third harmonic of a Nd:YAG laser. Jpn J. Appl. Phys. 18, 209 (1979).
Wang, S. et al. Low-threshold amplified spontaneous emission in blue quantum dots enabled by effectively suppressing auger recombination. Adv. Opt. Mater. 9, 2100068 (2021).
Chan, Y. et al. Blue semiconductor nanocrystal laser. Appl. Phys. Lett. 86, 073102 (2005).
Wang, Y., Li, X., Nalla, V., Zeng, H. & Sun, H. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals. Adv. Funct. Mater. 27, 1605088 (2017).
Yakunin, S. et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, 8056 (2015).
Wang, L. et al. Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots. J. Phys. Chem. Lett. 10, 3248–3253 (2019).
Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).
Gao, M. et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 21, 7252–7260 (2021).
Wang, A. et al. Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes. Nanoscale 7, 2951–2959 (2015).
Deng, X., Zhang, F., Zhang, Y. & Shen, H. Heavy-metal-free blue-emitting ZnSe(Te) quantum dots: synthesis and light-emitting applications. J. Mater. Chem. C 11, 14495–14514 (2023).
Huang, Z. et al. Broadband tunable optical gain from ecofriendly semiconductor quantum dots with near-half-exciton threshold. Nano Lett. 23, 4032–4038 (2023).
Huang, Z. et al. Deciphering ultrafast carrier dynamics of eco-friendly ZnSeTe-based quantum dots: toward high-quality blue–green emitters. J. Phys. Chem. Lett. 12, 11931–11938 (2021).
Wei, H. et al. Blue lasing from heavy-metal-free colloidal quantum dots. Laser Photonics Rev. 17, 2200557 (2023).
Kozlov, O. V. et al. Sub–single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity. Science 365, 672–675 (2019).
Ji, B., Koley, S., Slobodkin, I., Remennik, S. & Banin, U. ZnSe/ZnS core/shell quantum dots with superior optical properties through thermodynamic shell growth. Nano Lett. 20, 2387–2395 (2020).
García-Santamaría, F. et al. Suppressed Auger recombination in ‘giant’ nanocrystals boosts optical gain performance. Nano Lett. 9, 3482–3488 (2009).
Lim, J., Park, Y.-S. & Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–49 (2018).
Cragg, G. E. & Efros, A. L. Suppression of Auger processes in confined structures. Nano Lett. 10, 313–317 (2009).
Long, Z. et al. The strain effects and interfacial defects of large ZnSe/ZnS core/shell nanocrystals. Small 20, 2306602 (2024).
Bisschop, S., Geiregat, P., Aubert, T. & Hens, Z. The impact of core/shell sizes on the optical gain characteristics of CdSe/CdS quantum dots. ACS Nano 12, 9011–9021 (2018).
Rinke, M. & Güsten, H. Optische Aufheller als Laserfarbstoffe. Ber. Bunsenges. Phys. Chem. 90, 439–444 (1986).
Htoon, H., Hollingworth, J., Malko, A., Dickerson, R. & Klimov, V. Light amplification in semiconductor nanocrystals: quantum rods versus quantum dots. Appl. Phys. Lett. 82, 4776 (2003).
Ahn, N. et al. Optically excited lasing in a cavity-based, high-current-density quantum dot electroluminescent device. Adv. Mater. 35, 2206613 (2023).
Casperson, L. W. Threshold characteristics of mirrorless lasers. J. Appl. Phys. 48, 256–262 (1977).
Jones, M., Nedeljkovic, J., Ellingson, R. J., Nozik, A. J. & Rumbles, G. Photoenhancement of luminescence in colloidal CdSe quantum dot solutions. J. Phys. Chem. B 107, 11346–11352 (2003).
Hines, M. A. & Guyot-Sionnest, P. Bright UV-blue luminescent colloidal ZnSe nanocrystals. J. Phys. Chem. B 102, 3655–3657 (1998).
Lin, S. et al. Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Res. 13, 824–831 (2020).
Jang, E.-P. et al. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl. Mater. Interfaces 11, 46062–46069 (2019).
Wu, K. Figures for “Blue laser using low-toxicity quantum dots in liquids”. figshare https://doi.org/10.6084/m9.figshare.26763205 (2024).