domingo, janeiro 19, 2025
HomeNanotechnologyBiomimetic nanocarriers in cancer therapy: based on intercellular and cell-tumor microenvironment communication...

Biomimetic nanocarriers in cancer therapy: based on intercellular and cell-tumor microenvironment communication | Journal of Nanobiotechnology


  • Stone JB, DeAngelis LM. Cancer-treatment-induced neurotoxicity—focus on newer treatments. Nat Reviews Clin Oncol. 2015;13:92–105.

    Article 

    Google Scholar
     

  • Xia Y, Sun M, Huang H, Jin W-L. Drug repurposing for cancer therapy. Signal Transduct Target Therapy, 9 (2024).

  • Jiang Y, Chen H, Lin T, Zhang C, Shen J, Chen J, Zhao Y, Xu W, Wang G, Huang P. Ultrasound-activated prodrug-loaded liposome for efficient cancer targeting therapy without chemotherapy-induced side effects. J Nanobiotechnol, 22 (2024).

  • Huang G, Liu L, Pan H, Cai L. Biomimetic active materials guided immunogenic cell death for enhanced Cancer Immunotherapy. Small Methods, 7 (2022).

  • Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575:299–309.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y, van der Meel R, Chen X, Lammers T. The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics. 2020;10:7921–4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soprano E, Polo E, Pelaz B. P. Del Pino, Biomimetic cell-derived nanocarriers in cancer research. J Nanobiotechnol, 20 (2022).

  • Lee JY, Vyas CK, Kim GG, Choi PS, Hur MG, Yang SD, Kong YB, Lee EJ, Park JH. Red blood cell membrane bioengineered Zr-89 Labelled Hollow Mesoporous silica Nanosphere for overcoming phagocytosis. Sci Rep, 9 (2019).

  • Cui Y, Wang D, Xie M. Tumor-derived extracellular vesicles promote activation of Carcinoma-Associated fibroblasts and facilitate Invasion and Metastasis of Ovarian Cancer by carrying miR-630. Front Cell Dev Biology, 9 (2021).

  • Aslan C, Maralbashi S, Salari F, Kahroba H, Sigaroodi F, Kazemi T, Kharaziha P. Tumor-derived exosomes: implication in angiogenesis and antiangiogenesis cancer therapy. J Cell Physiol. 2019;234:16885–903.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao S, Mi Y, Guan B, Zheng B, Wei P, Gu Y, Zhang Z, Cai S, Xu Y, Li X, He X, Zhong X, Li G, Chen Z, Li D. Correction to: Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol, 14 (2021).

  • Choo YW, Kang M, Kim HY, Han J, Kang S, Lee J-R, Jeong G-J, Kwon SP, Song SY, Go S, Jung M, Hong J, Kim B-S. M1 macrophage-derived nanovesicles potentiate the Anticancer efficacy of Immune Checkpoint inhibitors. ACS Nano. 2018;12:8977–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou X, Zhuang Y, Liu X, Gu Y, Wang J, Shi Y, Zhang L, Li R, Zhao Y, Chen H, Li J, Yao H, Li L. Study on tumour cell-derived hybrid exosomes as dasatinib nanocarriers for pancreatic cancer therapy. Artif Cells Nanomed Biotechnol. 2023;51:532–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang L, Rong Y, Tang X, Yi K, Qi P, Hou J, Liu W, He Y, Gao X, Yuan C, Wang F. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol Cancer, 21 (2022).

  • Nguyen PHD, Jayasinghe MK, Le AH, Peng B, Le MTN. Advances in Drug Delivery systems based on Red Blood cells and their membrane-derived nanoparticles. ACS Nano. 2023;17:5187–210.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang X, Li D, Gu Y, Zhao Y, Li A, Qi F, Liu J. Natural cell based biomimetic cellular transformers for targeted therapy of digestive system cancer. Theranostics. 2022;12:7080–107.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gundersen SI, Palmer AF. Hemoglobin-based oxygen carrier enhanced tumor oxygenation: a novel strategy for cancer therapy. Biotechnol Prog. 2008;24:1353–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donohoe C, Senge MO, Arnaut LG. L.C. Gomes-da-Silva, Cell death in photodynamic therapy: from oxidative stress to anti-tumor immunity, Biochimica et Biophysica Acta (BBA) – reviews on Cancer, 1872 (2019).

  • Yang Y, Huang J, Liu M, Qiu Y, Chen Q, Zhao T, Xiao Z, Yang Y, Jiang Y, Huang Q, Ai K. Emerging Sonodynamic Therapy-Based Nanomedicines for Cancer Immunotherapy, Advanced Science, 10 (2022).

  • Gao C, Lin Z, Wang D, Wu Z, Xie H, He Q. Red blood cell-mimicking Micromotor for active photodynamic Cancer therapy. ACS Appl Mater Interfaces. 2019;11:23392–400.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Zhang J, Ding L, Ni W, Yuan J, Xiao H, Zhang J. RBC-derived nanosystem with enhanced ferroptosis triggered by oxygen-boosted phototherapy for synergized tumor treatment. Biomaterials Sci. 2021;9:7228–36.

    Article 
    CAS 

    Google Scholar
     

  • Zhou A, Fang T, Chen K, Xu Y, Chen Z, Ning X. Biomimetic Activator of Sonodynamic Ferroptosis Amplifies Inherent Peroxidation for Improving the Treatment of Breast Cancer, Small, 18 (2022).

  • Xu R, Zhang G, Mai J, Deng X, Segura-Ibarra V, Wu S, Shen J, Liu H, Hu Z, Chen L, Huang Y, Koay E, Huang Y, Liu J, Ensor JE, Blanco E, Liu X, Ferrari M, Shen H. An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat Biotechnol. 2016;34:414–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang N, Li J, Wang J, Nie D, Jiang X, Zhuo Y, Yu M. Shape-directed drug release and transport of erythrocyte-like nanodisks augment chemotherapy. J Controlled Release. 2022;350:886–97.

    Article 
    CAS 

    Google Scholar
     

  • Noji S, Taniguchi S, Kon H. An EPR study on erythrocyte deformability. Prog Biophys Mol Biol. 1991;55:85–105.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bremmell KE, Evans A, Prestidge CA, Biointerfaces. 50 (2006) 43–8.

  • Miao Y, Yang Y, Guo L, Chen M, Zhou X, Zhao Y, Nie D, Gan Y, Zhang X. Cell membrane-camouflaged nanocarriers with Biomimetic Deformability of erythrocytes for Ultralong circulation and enhanced Cancer Therapy. ACS Nano. 2022;16:6527–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thon JN, Italiano JE. Platelets: Production, Morphology and Ultrastructure, Antiplatelet Agents2012, pp. 3–22.

  • Franco AT, Corken A, Ware J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood. 2015;126:582–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Q, Ji T, Tang X, Guo W. The role of tumor-platelet interplay and micro tumor thrombi during hematogenous tumor metastasis. Cell Oncol. 2023;46:521–32.

    Article 

    Google Scholar
     

  • Samanta D, Almo SC. Nectin family of cell-adhesion molecules: structural and molecular aspects of function and specificity. Cell Mol Life Sci. 2014;72:645–58.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mammadova-Bach E, Zigrino P, Brucker C, Bourdon C, Freund M, De Arcangelis A, Abrams SI, Orend G, Gachet C, Mangin PH. Platelet integrin α6β1 controls lung metastasis through direct binding to cancer cell–derived ADAM9. JCI Insight, 1 (2016).

  • McCarty OJ, Zhao Y, Andrew N, Machesky LM, Staunton D, Frampton J, Watson SP. Evaluation of the role of platelet integrins in fibronectin-dependent spreading and adhesion. J Thromb Haemostasis: JTH. 2004;2:1823–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartolomé RA, Robles J, Martin-Regalado Á, Pintado‐Berninches L, Burdiel M, Jaén M, Aizpurúa C, Imbaud JI, Casal JI. CDH6‐activated αIIbβ3 crosstalks with α2β1 to trigger cellular adhesion and invasion in metastatic ovarian and renal cancers. Mol Oncol. 2021;15:1849–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakayama T, Saito R, Furuya S, Shoda K, Maruyma S, Takiguchi K, Shiraishi K, Akaike H, Kawaguchi Y, Amemiya H, Kawaida H, Tsukiji N, Shirai T, Shinmori H, Yamamoto M, Nomura S, Tsukamoto T, Suzuki–Inoue K, Ichikawa D. Inhibition of cancer cell–platelet adhesion as a promising therapeutic target for preventing peritoneal dissemination of gastric cancer. Oncol Lett, 26 (2023).

  • Wang X, Liu B, Xu M, Jiang Y, Zhou J, Yang J, Gu H, Ruan C, Wu J, Zhao Y. Blocking podoplanin inhibits platelet activation and decreases cancer-associated venous thrombosis. Thromb Res. 2021;200:72–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alves CS, Burdick MM, Thomas SN, Pawar P, Konstantopoulos K. The dual role of CD44 as a functional P-selectin ligand and fibrin receptor in colon carcinoma cell adhesion. Am J Physiology-Cell Physiol. 2008;294:C907–16.

    Article 
    CAS 

    Google Scholar
     

  • Li L, Fu J, Wang X, Chen Q, Zhang W, Cao Y, Ran H. Biomimetic nanoplatelets as a targeted drug delivery platform for breast Cancer theranostics. ACS Appl Mater Interfaces. 2021;13:3605–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuo H, Tao J, Shi H, He J, Zhou Z, Zhang C. Platelet-mimicking nanoparticles co-loaded with W18O49 and metformin alleviate tumor hypoxia for enhanced photodynamic therapy and photothermal therapy. Acta Biomater. 2018;80:296–307.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bahmani B, Gong H, Luk BT, Haushalter KJ, DeTeresa E, Previti M, Zhou J, Gao W, Bui JD, Zhang L, Fang RH, Zhang J. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat Commun, 12 (2021).

  • Uslu D, Abas BI, Demirbolat GM, Cevik O. Effect of platelet exosomes loaded with doxorubicin as a targeted therapy on triple-negative breast cancer cells. Molecular Diversity; 2022.

  • Antwi-Baffour S, Adjei J, Aryeh C, Kyeremeh R, Kyei F, Seidu MA. Understanding the biosynthesis of platelets-derived extracellular vesicles. Immun Inflamm Dis. 2015;3:133–40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farnsworth RH, Lackmann M, Achen MG, Stacker SA. Vascular remodeling in cancer. Oncogene. 2013;33:3496–505.

    Article 
    PubMed 

    Google Scholar
     

  • Li H, Zhou S, Wu M, Qu R, Wang X, Chen W, Jiang Y, Jiang X, Zhen X. Light-Driven Self‐Recruitment of Biomimetic Semiconducting Polymer Nanoparticles for Precise Tumor Vascular Disruption, Advanced Materials, 35 (2023).

  • Mereweather LJ, Constantinescu-Bercu A, Crawley JTB, Salles-Crawley II. Platelet–neutrophil crosstalk in thrombosis. Int J Mol Sci, 24 (2023).

  • Wang Y, Li W, Li Z, Mo F, Chen Y, Iida M, Wheeler DL, Hu Q. Active recruitment of anti-PD-1-conjugated platelets through tumor-selective thrombosis for enhanced anticancer immunotherapy. Sci Adv. 2023;9:eadf6854.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji J, Lian W, Zhang Y, Lin D, Wang J, Mo Y, Xu X, Hou C, Ma C, Zheng Y, Chen J, Zhong J, Zhang F, Ke Y, Chen H. Preoperative administration of a biomimetic platelet nanodrug enhances postoperative drug delivery by bypassing thrombus. Int J Pharm, 636 (2023).

  • Mukherjee A, Bilecz AJ, Lengyel E. The adipocyte microenvironment and cancer. Cancer Metastasis Rev. 2022;41:575–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoy AJ, Balaban S, Saunders DN. Adipocyte–tumor cell metabolic crosstalk in breast Cancer. Trends Mol Med. 2017;23:381–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Gu Y, Qi F, Li A, Tang X, Li D, Wu X, Liu J. Engineering adipocytes for targeting delivery of triptolide derivative and Ce6 for malignant melanoma cytotoxic-PDT synergistic strategy. Mater Design, 228 (2023).

  • Wen D, Liang T, Chen G, Li H, Wang Z, Wang J, Fu R, Han X, Ci T, Zhang Y, Abdou P, Li R, Bu L, Dotti G, Gu Z. Adipocytes Encapsulating Telratolimod Recruit and Polarize Tumor-Associated Macrophages for Cancer Immunotherapy, Advanced Science, 10 (2022).

  • Liang T, Wen D, Chen G, Chan A, Chen Z, Li H, Wang Z, Han X, Jiang L, Zhu JJ, Gu Z. Adipocyte-Derived Anticancer Lipid Droplets, Advanced Materials, 33 (2021).

  • Lu J, Liu Q-H, Wang F, Tan J-J, Deng Y-Q, Peng X-H, Liu X, Zhang B, Xu X, Li X-P. Exosomal miR-9 inhibits angiogenesis by targeting MDK and regulating PDK/AKT pathway in nasopharyngeal carcinoma. J Experimental Clin Cancer Res, 37 (2018).

  • Zhu J-Y, Zheng D-W, Zhang M-K, Yu W-Y, Qiu W-X, Hu J-J, Feng J, Zhang X-Z. Preferential Cancer Cell Self-Recognition and Tumor Self-Targeting by Coating nanoparticles with Homotypic Cancer cell membranes. Nano Lett. 2016;16:5895–901.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bose RJC, Paulmurugan R, Moon J, Lee S-H, Park H. Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics. Drug Discovery Today. 2018;23:891–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia J, Cheng Y, Zhang H, Li R, Hu Y, Liu B. The role of adhesions between homologous cancer cells in tumor progression and targeted therapy. Expert Rev Anticancer Ther. 2017;17:517–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, He Z, Li Y, Xia Q, Li Z, Hou X, Feng N. Tumor cell membrane-derived nano-Trojan horses encapsulating phototherapy and chemotherapy are accepted by homologous tumor cells, Materials Science and Engineering: C, 120 (2021).

  • Wen M, Zhao Y, Qiu P, Ren Q, Tao C, Chen Z, Yu N. Efficient sonodynamic ablation of deep-seated tumors via cancer-cell-membrane camouflaged biocompatible nanosonosensitizers. J Colloid Interface Sci. 2023;644:388–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Zhang L, Zhao G, Zhang Y, Zhan F, Chen Z, He T, Cao Y, Hao L, Wang Z, Quan Z, Ou Y. Correction to: homologous targeting nanoparticles for enhanced PDT against osteosarcoma HOS cells and the related molecular mechanisms. J Nanobiotechnol, 20 (2022).

  • Zheng B, Liu Z, Wang H, Sun L, Lai W-F, Zhang H, Wang J, Liu Y, Qin X, Qi X, Wang S, Shen Y, Zhang P, Zhang D. R11 modified tumor cell membrane nanovesicle-camouflaged nanoparticles with enhanced targeting and mucus-penetrating efficiency for intravesical chemotherapy for bladder cancer. J Controlled Release. 2022;351:834–46.

    Article 
    CAS 

    Google Scholar
     

  • Xie X, Hu X, Li Q, Yin M, Song H, Hu J, Wang L, Fan C, Chen N. Unraveling cell-type-specific targeted delivery of membrane-camouflaged nanoparticles with Plasmonic Imaging. Nano Lett. 2020;20:5228–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang F, Hu Q, Li B, Huang Y, Wang M, Shao S, Tang H, Yao Z, Ping Y, Liang T. A biomimetic nanodrug for enhanced chemotherapy of pancreatic tumors. J Controlled Release. 2023;354:835–50.

    Article 
    CAS 

    Google Scholar
     

  • Hu S, Ma J, Su C, Chen Y, Shu Y, Qi Z, Zhang B, Shi G, Zhang Y, Zhang Y, Huang A, Kuang Y, Cheng P. Engineered exosome-like nanovesicles suppress tumor growth by reprogramming tumor microenvironment and promoting tumor ferroptosis. Acta Biomater. 2021;135:567–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naseri M, Bozorgmehr M, Zöller M, Ranaei Pirmardan E, Madjd Z. Tumor-derived exosomes: the next generation of promising cell-free vaccines in cancer immunotherapy. OncoImmunology; 2020. p. 9.

  • Li X, Yu Y, Chen Q, Lin J, Zhu X, Liu X, He L, Chen T, He W. Engineering cancer cell membrane-camouflaged metal complex for efficient targeting therapy of breast cancer. J Nanobiotechnol, 20 (2022).

  • Wang D, Liu C, You S, Zhang K, Li M, Cao Y, Wang C, Dong H, Zhang X. Bacterial vesicle-Cancer cell hybrid membrane-coated nanoparticles for Tumor Specific Immune activation and Photothermal Therapy. ACS Appl Mater Interfaces. 2020;12:41138–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu B, Yang Y, Chao Y, Xiao Z, Xu J, Wang C, Dong Z, Hou L, Li Q, Liu Z. Equipping Cancer Cell membrane vesicles with functional DNA as a targeted vaccine for Cancer Immunotherapy. Nano Lett. 2021;21:9410–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Dong S, Wu J, Lv X, Yang N, Wei Q, Wang C, Chen J. Surgically Derived Cancer Cell membrane-coated R837-Loaded poly(2-Oxazoline) nanoparticles for prostate Cancer immunotherapy. ACS Appl Mater Interfaces. 2023;15:7878–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Y, Krishnan N, Zhou J, Chekuri S, Wei X, Kroll AV, Yu CL, Duan Y, Gao W, Fang RH, Zhang L. Engineered cell-membrane‐coated nanoparticles directly Present Tumor antigens to promote anticancer immunity. Adv Mater, 32 (2020).

  • Najafi M, Hashemi Goradel N, Farhood B, Salehi E, Nashtaei MS, Khanlarkhani N, Khezri Z, Majidpoor J, Abouzaripour M, Habibi M, Kashani IR, Mortezaee K. Macrophage polarity in cancer: a review. J Cell Biochem. 2018;120:2756–65.

    Article 
    PubMed 

    Google Scholar
     

  • Fan C-H, Lee Y-H, Ho Y-J, Wang C-H, Kang S-T. Yeh, macrophages as Drug Delivery Carriers for Acoustic Phase-Change droplets. Ultrasound Med Biol. 2018;44:1468–81.

    Article 
    PubMed 

    Google Scholar
     

  • Pang L, Zhu Y, Qin J, Zhao W, Wang J. Primary M1 macrophages as multifunctional carrier combined with PLGA nanoparticle delivering anticancer drug for efficient glioma therapy. Drug Delivery. 2018;25:1922–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Z, Sun X, Liu X, Shen Y, Wang K. Macrophages as an active tumour-targeting carrier of SN38-nanoparticles for cancer therapy. J Drug Target. 2018;26:458–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Q, Xiang HF, Zhang J, Massagué. Macrophage binding to receptor VCAM-1 transmits survival signals in breast Cancer cells that invade the lungs. Cancer Cell. 2011;20:538–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo W, Chen W, Liu J, Huang S, Chen L, Liu Q, Liu N, Jin Q, Li Y, Wang P, Zhu X. Macrophage-mimic Hollow Mesoporous Fe-Based nanocatalysts for self-amplified chemodynamic therapy and metastasis inhibition via Tumor Microenvironment Remodeling. ACS Appl Mater Interfaces. 2022;14:5053–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Owen JL, Mohamadzadeh M. Macrophages and chemokines as mediators of angiogenesis. Front Physiol, 4 (2013).

  • Zhao H, Li L, Zhang J, Zheng C, Ding K, Xiao H, Wang L, Zhang Z. C–C chemokine Ligand 2 (CCL2) recruits macrophage-membrane-camouflaged Hollow Bismuth Selenide nanoparticles to facilitate Photothermal Sensitivity and inhibit lung metastasis of breast Cancer. ACS Appl Mater Interfaces. 2018;10:31124–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim H, Park H-J, Chang HW, Back JH, Lee SJ, Park YE, Kim EH, Hong Y, Kwak G, Kwon IC, Lee JE, Lee YS, Kim SY, Yang Y, Kim SH. Exosome-guided direct reprogramming of tumor-associated macrophages from protumorigenic to antitumorigenic to fight cancer. Bioactive Mater. 2023;25:527–40.

    Article 
    CAS 

    Google Scholar
     

  • Nie W, Wu G, Zhang J, Huang LL, Ding J, Jiang A, Zhang Y, Liu Y, Li J, Pu K, Xie HY. Responsive Exosome Nano-bioconjugates for synergistic Cancer therapy. Angew Chem Int Ed. 2019;59:2018–22.

    Article 

    Google Scholar
     

  • Wang X, Ding H, Li Z, Peng Y, Tan H, Wang C, Huang G, Li W, Ma G, Wei W. Exploration and functionalization of M1-macrophage extracellular vesicles for effective accumulation in glioblastoma and strong synergistic therapeutic effects. Signal Transduct Target Therapy, 7 (2022).

  • Raulet DH, Vance RE. Self-tolerance of natural killer cells. Nat Rev Immunol. 2006;6:520–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Childs RW, Carlsten M. Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens. Nat Rev Drug Discovery. 2015;14:487–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yilmaz A, Cui H, Caligiuri MA, Yu J. Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. J Hematol Oncol. 2020;13:168.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ljunggren HG, Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol. 2007;7:329–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashkenazi A, Holland P, Eckhardt SG. Ligand-based targeting of apoptosis in Cancer: the potential of recombinant human apoptosis Ligand 2/Tumor necrosis factor–related apoptosis-inducing ligand (rhApo2L/TRAIL). J Clin Oncol. 2008;26:3621–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lugini L, Cecchetti S, Huber V, Luciani F, Macchia G, Spadaro F, Paris L, Abalsamo L, Colone M, Molinari A, Podo F, Rivoltini L, Ramoni C, Fais S. Immune Surveillance Properties of Human NK Cell-Derived exosomes. J Immunol. 2012;189:2833–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • J.M.O. Liya Zhu 1, Prakash Gangadaran 1, Senthilkumar Kalimuthu 1, Se Hwan Baek 1, Shin Young Jeong 1, Sang-Woo Lee 1, Jaetae Lee 1, Byeong-Cheol Ahn, Retraction: Targeting and Therapy of Glioblastoma in a mouse model using Exosomes Derived from Natural Killer cells. Front Immunol, 10 (2019).

  • Kim HY, Min H-K, Song H-W, Yoo A, Lee S, Kim K-P, Park J-O, Choi YH, Choi E. Delivery of human natural killer cell-derived exosomes for liver cancer therapy: an in vivo study in subcutaneous and orthotopic animal models. Drug Delivery. 2022;29:2897–911.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neviani P, Wise PM, Murtadha M, Liu CW, Wu C-H, Jong AY, Seeger RC, Fabbri M. Natural killer–derived exosomal miR-186 inhibits Neuroblastoma Growth and Immune escape mechanisms. Cancer Res. 2019;79:1151–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao F, Han J, Jia L, He J, Wang Y, Chen M, Liu X, He X. MiR-30c facilitates natural killer cell cytotoxicity to lung cancer through targeting GALNT7. Genes Genomics. 2022;45:247–60.

    Article 
    PubMed 

    Google Scholar
     

  • Sun H, Shi K, Qi K, Kong H, Zhang J, Dai S, Ye W, Deng T, He Q, Zhou M. Natural killer cell-derived exosomal mir-3607-3p inhibits pancreatic Cancer progression by targeting IL-26. Front Immunol, 10 (2019).

  • Di Pace AL, Pelosi A, Fiore PF, Tumino N, Besi F, Quatrini L, Santopolo S, Vacca P, Moretta L. MicroRNA analysis of natural killer cell-derived exosomes: the microRNA let-7b-5p is enriched in exosomes and participates in their anti-tumor effects against pancreatic cancer cells. OncoImmunology; 2023. p. 12.

  • Sun M, Li H, Feng B. miR-30e-3p in natural killer cell-derived exosomes inhibits the proliferation and invasion of human esophageal squamous carcinoma cells, Xi bao Yu Fen Zi Mian Yi Xue Za Zhi = Chinese. J Cell Mol Immunol. 2023;39:295–302.


    Google Scholar
     

  • Huyan T, Gao L, Gao N, Wang C, Guo W, Zhou X, Li Q. Mir-221-5p and mir-186-5p are the critical bladder Cancer Derived Exosomal miRNAs in Natural Killer Cell Dysfunction. Int J Mol Sci, 23 (2022).

  • Han D, Wang K, Zhang T, Gao GC, Xu H. Natural killer cell-derived exosome-entrapped paclitaxel can enhance its anti-tumor effect. Eur Rev Med Pharmacol Sci. 2020;24:5703–13.

    CAS 
    PubMed 

    Google Scholar
     

  • Kaban K, Hinterleitner C, Zhou Y, Salva E, Kantarci AG, Salih HR, Märklin M. Therapeutic silencing of BCL-2 using NK Cell-Derived exosomes as a Novel Therapeutic Approach in breast Cancer. Cancers; 2021. p. 13.

  • Nie W, Fan W, Jiang A, Wu G, Liu H, Huang L-L, Xie H-Y. Natural killer cell-derived extracellular vesicle significantly enhanced adoptive T cell therapy against solid tumors via versatilely immunomodulatory coordination. Sci China Chem. 2021;64:1999–2009.

    Article 
    CAS 

    Google Scholar
     

  • Dosil SG, Lopez-Cobo S, Rodriguez-Galan A, Fernandez-Delgado I, Ramirez-Huesca M, Milan-Rois P, Castellanos M, Somoza A, Gómez MJ, Reyburn HT, Vales-Gomez M, Sánchez F, Madrid L. Fernandez-Messina, Natural Killer (NK) cell-derived extracellular-vesicle shuttled microRNAs control T cell responses. Elife. 2022;29:76319.

    Article 

    Google Scholar
     

  • Hatami Z, Hashemi ZS, Eftekhary M, Amiri A, Karpisheh V, Nasrollahi K, Jafari R. Natural killer cell-derived exosomes for cancer immunotherapy: innovative therapeutics art. Cancer Cell Int, 23 (2023).

  • Deng G, Sun Z, Li S, Peng X, Li W, Zhou L, Ma Y, Gong P, Cai L. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and Abscopal Tumor Growth. ACS Nano. 2018;12:12096–108.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mende I, Engleman EG. Breaking tolerance to tumors with dendritic cell-based immunotherapy. Volume 1058. Annals of the New York Academy of Sciences; 2006. pp. 96–104.

  • Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2019;20:7–24.

    Article 
    PubMed 

    Google Scholar
     

  • Achmad H, Saleh Ibrahim Y, Mohammed Al-Taee M, Gabr GA, Waheed Riaz M, Hamoud Alshahrani S, Alexis A, Ramírez-Coronel A, Turki Jalil H, Setia Budi W, Sawitri M, Elena Stanislavovna J, Gupta. Nanovaccines in cancer immunotherapy: focusing on dendritic cell targeting. Int Immunopharmacol, 113 (2022).

  • Lu Z, Zuo B, Jing R, Gao X, Rao Q, Liu Z, Qi H, Guo H, Yin H. Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J Hepatol. 2017;67:739–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma X, Kuang L, Yin Y, Tang L, Zhang Y, Fan Q, Wang B, Dong Z, Wang W, Yin T, Wang Y. Tumor–Antigen activated dendritic cell membrane-coated biomimetic nanoparticles with orchestrating Immune responses promote therapeutic efficacy against Glioma. ACS Nano. 2023;17:2341–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan M, Liu H, Yan H, Che R, Jin Y, Yang X, Zhou X, Yang H, Ge K, Liang X-J, Zhang J, Li Z. A CAR T-inspiring platform based on antibody-engineered exosomes from antigen-feeding dendritic cells for precise solid tumor therapy. Biomaterials, 282 (2022).

  • Harvey BT, Fu X, Li L, Neupane KR, Anand N, Kolesar JM. Richards, dendritic cell membrane-derived nanovesicles for targeted T cell activation. ACS Omega. 2022;7:46222–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong S, Dong L, Cheng L. Neutrophils in cancer carcinogenesis and metastasis. J Hematol Oncol, 14 (2021).

  • Wang H, Zang J, Zhao Z, Zhang Q, Chen S. The advances of Neutrophil-Derived Effective Drug Delivery systems: a key review of managing tumors and inflammation. Int J Nanomed. 2021;16:7663–81.

    Article 
    CAS 

    Google Scholar
     

  • Chang Y, Cai X, Syahirah R, Yao Y, Xu Y, Jin G, Bhute VJ, Torregrosa-Allen S, Elzey BD, Won Y-Y, Deng Q, Lian XL, Wang X, Eniola-Adefeso O, Bao X. CAR-neutrophil mediated delivery of tumor-microenvironment responsive nanodrugs for glioblastoma chemo-immunotherapy. Nat Commun, 14 (2023).

  • Wang J, Tang W, Yang M, Yin Y, Li H, Hu F, Tang L, Ma X, Zhang Y, Wang Y. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy. Biomaterials, 273 (2021).

  • Shang B, Cui H, Xie R, Wu J, Shi H, Bi X, Feng L, Shou J. Neutrophil extracellular traps primed intercellular communication in cancer progression as a promising therapeutic target. Biomark Res, 11 (2023).

  • Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, Scheidmann MC, Donato C, Scherrer R, Singer J, Beisel C, Kurzeder C, Heinzelmann-Schwarz V, Rochlitz C, Weber WP, Beerenwinkel N, Aceto N. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature. 2019;566:553–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Wang Q, Dai Y, Chen J, Wu T, Ju C, Xue L, Zhang C. New-generation cytopharmaceuticals with powerfully boosted extravasation for enhanced cancer therapy. J Controlled Release: Official J Controlled Release Soc. 2023;359:116–31.

    Article 
    CAS 

    Google Scholar
     

  • Huang R, Fan D, Cheng H, Huo J, Wang S, He H, Zhang G. Multi-site attack, Neutrophil membrane-camouflaged nanomedicine with high drug loading for enhanced Cancer Therapy and Metastasis Inhibition. Int J Nanomed. 2023;18:3359–75.

    Article 
    CAS 

    Google Scholar
     

  • Cui T, Zhang Y, Qin G, Wei Y, Yang J, Huang Y, Ren J, Qu X. A neutrophil mimicking metal-porphyrin-based nanodevice loaded with porcine pancreatic elastase for cancer therapy. Nat Commun, 14 (2023).

  • Zhang J, Ji C, Zhang H, Shi H, Mao F, Qian H, Xu W, Wang D, Pan J, Fang X, Santos HA, Zhang X. Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy. Sci Adv. 2022;8:eabj8207.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh DY, Fong L. Cytotoxic CD4(+) T cells in cancer: expanding the immune effector toolbox. Immunity. 2021;54:2701–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacNabb BW, Tumuluru S, Chen X, Godfrey J, Kasal DN, Yu J, Jongsma MLM, Spaapen RM, Kline DE, Kline J. Dendritic cells can prime anti-tumor CD8(+) T cell responses through major histocompatibility complex cross-dressing. Immunity. 2022;55:982–e997988.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou WJ, Zhang J, Xie F, Wu JN, Ye JF, Wang J, Wu K, Li MQ. CD45RO(-)CD8(+) T cell-derived exosomes restrict estrogen-driven endometrial cancer development via the ERβ/miR-765/PLP2/Notch axis, Theranostics, 11 (2021) 5330–5345.

  • Correia DV, Lopes A, Silva-Santos B. Tumor cell recognition by γδ T lymphocytes: T-cell receptor vs. NK-cell receptors. Oncoimmunology. 2013;2:e22892.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Y, Niu C, Cui J. Gamma-delta (γδ) T cells: friend or foe in cancer development? J Translational Med. 2018;16:3.

    Article 
    CAS 

    Google Scholar
     

  • Liao W, Lin JX, Leonard WJ. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity. 2013;38:13–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trujillo-Cirilo L, Weiss-Steider B, Vargas-Angeles CA, Corona-Ortega MT. Rangel-Corona, Immune microenvironment of cervical cancer and the role of IL-2 in tumor promotion. Cytokine. 2023;170:156334.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin S, Jung I, Jung D, Kim CS, Kang SM, Ryu S, Choi SJ, Noh S, Jeong J, Lee BY, Park JK, Shin J, Cho H, Heo JI, Jeong Y, Choi SH, Lee SY, Baek MC, Yea K. Novel antitumor therapeutic strategy using CD4(+) T cell-derived extracellular vesicles. Biomaterials. 2022;289:121765.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung D, Shin S, Kang SM, Jung I, Ryu S, Noh S, Choi SJ, Jeong J, Lee BY, Kim KS, Kim CS, Yoon JH, Lee CH, Bucher F, Kim YN, Im SH, Song BJ, Yea K, Baek MC. Reprogramming of T cell-derived small extracellular vesicles using IL2 surface engineering induces potent anti-cancer effects through miRNA delivery. J Extracell Vesicles. 2022;11:e12287.

    Article 
    PubMed 

    Google Scholar
     

  • Li L, Jay SM, Wang Y, Wu SW, Xiao Z. IL-12 stimulates CTLs to secrete exosomes capable of activating bystander CD8(+) T cells. Sci Rep. 2017;7:13365.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mensurado S, Blanco-Domínguez R, Silva-Santos B. The emerging roles of γδ T cells in cancer immunotherapy, Nature reviews. Clin Oncol. 2023;20:178–91.

    CAS 

    Google Scholar
     

  • Wang X, Xiang Z, Liu Y, Huang C, Pei Y, Wang X, Zhi H, Wong WH, Wei H, Ng IO, Lee PP, Chan GC, Lau YL, Tu W. Exosomes derived from Vδ2-T cells control Epstein-Barr virus-associated tumors and induce T cell antitumor immunity. Sci Transl Med, 12 (2020).

  • Qiu Y, Yang Y, Yang R, Liu C, Hsu JM, Jiang Z, Sun L, Wei Y, Li CW, Yu D, Zhang J, Hung MC. Activated T cell-derived exosomal PD-1 attenuates PD-L1-induced immune dysfunction in triple-negative breast cancer. Oncogene. 2021;40:4992–5001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, Lu S, Liang X, Cao B, Wang S, Jiang J, Luo H, He S, Lang J, Zhu G. γδTDEs: an efficient delivery system for miR-138 with anti-tumoral and immunostimulatory roles on oral squamous cell carcinoma, Molecular therapy. Nucleic Acids. 2019;14:101–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status, stem cells (Dayton, Ohio), 28 (2010) 585–96.

  • Momin EN, Vela G, Zaidi HA, Quiñones-Hinojosa A. The Oncogenic Potential of Mesenchymal Stem Cells in the Treatment of Cancer: Directions for Future Research, Current immunology reviews, 6 (2010) 137–148.

  • Shojaei S, Moradi-Chaleshtori M, Paryan M, Koochaki A, Sharifi K, Mohammadi-Yeganeh S. Mesenchymal stem cell-derived exosomes enriched with miR-218 reduce the epithelial–mesenchymal transition and angiogenesis in triple-negative breast cancer cells. Eur J Med Res, 28 (2023).

  • Wang J, Li M, Jin L, Guo P, Zhang Z, Zhanghuang C, Tan X, Mi T, Liu J, Wu X, Wei G, He D. Exosome mimetics derived from bone marrow mesenchymal stem cells deliver doxorubicin to osteosarcoma in vitro and in vivo. Drug Delivery. 2022;29:3291–303.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan Y, Wang X, Li Y, Yan P, Zhang H. Human umbilical cord blood mesenchymal stem cells-derived exosomal microRNA-503-3p inhibits progression of human endometrial cancer cells through downregulating MEST. Cancer Gene Ther. 2022;29:1130–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie L, Zhang C, Liu M, Huang J, Jin X, Zhu C, Lv M, Yang N, Chen S, Shao M, Du X, Feng G. Nucleus-targeting Manganese Dioxide nanoparticles coated with the human umbilical cord mesenchymal stem cell membrane for Cancer Cell Therapy. ACS Appl Mater Interfaces. 2023;15:10541–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shojaei S, Hashemi SM, Ghanbarian H, Salehi M, Mohammadi-Yeganeh S. Effect of mesenchymal stem cells-derived exosomes on tumor microenvironment: tumor progression versus tumor suppression. J Cell Physiol. 2019;234:3394–409.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vakhshiteh F, Atyabi F, Ostad SN. Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy. Int J Nanomed. 2019;14:2847–59.

    Article 
    CAS 

    Google Scholar
     

  • Zhang F, Guo J, Zhang Z, Qian Y, Wang G, Duan M, Zhao H, Yang Z, Jiang X. Mesenchymal stem cell-derived exosome: a tumor regulator and carrier for targeted tumor therapy. Cancer Lett. 2022;526:29–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Sha H, Zhang L, Qian H, Chen F, Ding N, Ji L, Zhu A, Xu Q, Meng F, Yu L, Zhou Y, Liu B. Lipid insertion enables targeted functionalization of paclitaxel-loaded erythrocyte membrane nanosystem by tumor-penetrating bispecific recombinant protein. Int J Nanomed. 2018;13:5347–59.

    Article 
    CAS 

    Google Scholar
     

  • Yang H, Ding Y, Tong Z, Qian X, Xu H, Lin F, Sheng G, Hong L, Wang W, Mao Z. pH-responsive hybrid platelet membrane-coated nanobomb with deep tumor penetration ability and enhanced cancer thermal/chemodynamic therapy. Theranostics. 2022;12:4250–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hung ME, Leonard JN. Stabilization of exosome-targeting peptides via engineered glycosylation. J Biol Chem. 2015;290:8166–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bagheri E, Abnous K, Farzad SA, Taghdisi SM, Ramezani M, Alibolandi M. Targeted doxorubicin-loaded mesenchymal stem cells-derived exosomes as a versatile platform for fighting against colorectal cancer. Life Sci. 2020;261:118369.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Che J, Okeke CI, Hu ZB, Xu J. DSPE-PEG: a distinctive component in drug delivery system. Curr Pharm Design. 2015;21:1598–605.

    Article 
    CAS 

    Google Scholar
     

  • Xiong J, Wu M, Chen J, Liu Y, Chen Y, Fan G, Liu Y, Cheng J, Wang Z, Wang S, Liu Y, Zhang W. Cancer-Erythrocyte Hybrid membrane-camouflaged magnetic nanoparticles with enhanced photothermal-immunotherapy for ovarian Cancer. ACS Nano. 2021;15:19756–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du J, Wan Z, Wang C, Lu F, Wei M, Wang D, Hao Q. Designer exosomes for targeted and efficient ferroptosis induction in cancer via chemo-photodynamic therapy. Theranostics. 2021;11:8185–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pham TC, Jayasinghe MK, Pham TT, Yang Y, Wei L, Usman WM, Chen H, Pirisinu M, Gong J, Kim S, Peng B, Wang W, Chan C, Ma V, Nguyen NTH, Kappei D, Nguyen XH, Cho WC, Shi J, Le MTN. Covalent conjugation of extracellular vesicles with peptides and nanobodies for targeted therapeutic delivery. J Extracell Vesicles. 2021;10:e12057.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang R, Xu J, Xu L, Sun X, Chen Q, Zhao Y, Peng R, Liu Z. Cancer Cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano. 2018;12:5121–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei Z, Zhang X, Yong T, Bie N, Zhan G, Li X, Liang Q, Li J, Yu J, Huang G, Yan Y, Zhang Z, Zhang B, Gan L, Huang B, Yang X. Boosting anti-PD-1 therapy with metformin-loaded macrophage-derived microparticles. Nat Commun. 2021;12:440.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai Y, He X, Li Y, Han R, Ma Y, Gao P, Qian Z, Gu Y, Li S. A splenic-targeted versatile antigen courier: iPSC wrapped in coalescent erythrocyte-liposome as tumor nanovaccine. Sci Adv, 7 (2021).

  • Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J Controlled Release: Official J Controlled Release Soc. 2023;363:290–348.

    Article 
    CAS 

    Google Scholar
     

  • Goulet DR, Atkins WM. Considerations for the design of antibody-based therapeutics. J Pharm Sci. 2020;109:74–103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiu SJ, Ueno NT, Lee RJ. Tumor-targeted gene delivery via anti-HER2 antibody (trastuzumab, herceptin) conjugated polyethylenimine. J Controlled Release: Official J Controlled Release Soc. 2004;97:357–69.

    Article 
    CAS 

    Google Scholar
     

  • Hosseini NF, Amini R, Ramezani M, Saidijam M, Hashemi SM, Najafi R. AS1411 aptamer-functionalized exosomes in the targeted delivery of doxorubicin in fighting colorectal cancer. Volume 155. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie; 2022. p. 113690.

  • Ma W, Yang Y, Zhu J, Jia W, Zhang T, Liu Z, Chen X, Lin Y. Biomimetic nanoerythrosome-coated Aptamer-DNA Tetrahedron/Maytansine conjugates: pH-Responsive and targeted cytotoxicity for HER2-Positive breast Cancer, Advanced materials (Deerfield Beach, Fla.), 34 (2022) e2109609.

  • Taghavi S, Tabasi H, Zahiri M, Abnous K, Mohammad Taghdisi S, Nekooei S, Nekooei N, Ramezani M, Alibolandi M. Surface engineering of hollow gold nanoparticle with mesenchymal stem cell membrane and MUC-1 aptamer for targeted theranostic application against metastatic breast cancer. Eur J Pharm Biopharmaceutics: Official J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e V. 2023;187:76–86.

    Article 
    CAS 

    Google Scholar
     

  • Chen Z, Wang W, Li Y, Wei C, Zhong P, He D, Liu H, Wang P, Huang Z, Zhu W, Zhou Y, Qin L. Folic acid-modified erythrocyte membrane loading dual drug for targeted and Chemo-Photothermal Synergistic Cancer Therapy. Mol Pharm. 2021;18:386–402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo L, Zeng F, Xie J, Fan J, Xiao S, Wang Z, Xie H, Liu B. A RBC membrane-camouflaged biomimetic nanoplatform for enhanced chemo-photothermal therapy of cervical cancer. J Mater Chem B. 2020;8:4080–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng C, Xiong Z, Wang C, Xiao W, Xiao H, Xie K, Chen K, Liang H, Zhang X, Yang H. Folic acid-modified Exosome-PH20 enhances the efficiency of therapy via modulation of the tumor microenvironment and directly inhibits tumor cell metastasis. Bioactive Mater. 2021;6:963–74.

    Article 
    CAS 

    Google Scholar
     

  • Zhao J, Shi Y, Xue L, Liang Y, Shen J, Wang J, Wu M, Chen H, Kong M. Glucose-decorated engineering platelets for active and precise tumor-targeted drug delivery. Biomaterials Sci. 2023;11:3965–75.

    Article 
    CAS 

    Google Scholar
     

  • Li D, Gong L, Lin H, Yao S, Yin Y, Zhou Z, Shi J, Wu Z, Huang Z. Hyaluronic acid-coated bovine milk exosomes for achieving tumor-specific intracellular delivery of miRNA-204. Cells; 2022. p. 11.

  • Kou Q, Huang Y, Su Y, Lu L, Li X, Jiang H, Huang R, Li J, Nie X. Erythrocyte membrane-camouflaged DNA-functionalized upconversion nanoparticles for tumor-targeted chemotherapy and immunotherapy. Nanoscale. 2023;15:9457–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon J, Le XT, Kim J, Lee H, Nguyen NT, Lee WT, Lee ES, Oh KT, Choi HG, Youn YS. Macrophage-reprogramming upconverting nanoparticles for enhanced TAM-mediated antitumor therapy of hypoxic breast cancer. J Controlled Release: Official J Controlled Release Soc. 2023;360:482–95.

    Article 
    CAS 

    Google Scholar
     

  • Hou L, Gong X, Yang J, Zhang H, Yang W, Chen X. Hybrid-membrane-decorated prussian Blue for Effective Cancer Immunotherapy via Tumor-Associated macrophages polarization and Hypoxia Relief, Advanced materials (Deerfield Beach, Fla.), 34 (2022) e2200389.

  • Ellipilli S, Wang H, Binzel DW, Shu D, Guo P. Ligand-displaying-exosomes using RNA nanotechnology for targeted delivery of multi-specific drugs for liver cancer regression, Nanomedicine: nanotechnology, biology, and medicine, 50 (2023) 102667.

  • Xu H, Liao C, Liang S, Ye BC. A novel peptide-equipped exosomes platform for delivery of antisense oligonucleotides. ACS Appl Mater Interfaces. 2021;13:10760–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu Z, Zhai Y, Hao Y, Wang Q, Han F, Zheng W, Hong J, Cui L, Jin W, Ma S, Yang L, Cheng G. Specific anti-glioma targeted-delivery strategy of engineered small extracellular vesicles dual-functionalised by Angiopep-2 and TAT peptides. J Extracell Vesicles. 2022;11:e12255.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nica V, Marino A, Pucci C, Şen Ö, Emanet M, De Pasquale D, Carmignani A, Petretto A, Bartolucci M, Lauciello S, Brescia R, de Boni F, Prato M, Marras S, Drago F, Hammad M, Segets D, Ciofani G. Cell-membrane-coated and cell-penetrating peptide-conjugated trimagnetic nanoparticles for targeted magnetic hyperthermia of prostate Cancer cells. ACS Appl Mater Interfaces. 2023;15:30008–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Ji Y, Hu N, Yu Q, Zhang X, Li J, Wu F, Xu H, Tang Q, Li X. Ferroptosis-induced anticancer effect of resveratrol with a biomimetic nano-delivery system in colorectal cancer treatment. Asian J Pharm Sci. 2022;17:751–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu W, Guo H, Jing D, Zhang Z, Zhang Z, Pu F, Yang W, Jin X, Huang X, Shao Z. Targeted delivery of PD-L1-Derived phosphorylation-mimicking peptides by Engineered Biomimetic nanovesicles to enhance Osteosarcoma Treatment. Adv Healthc Mater. 2022;11:e2200955.

    Article 
    PubMed 

    Google Scholar
     

  • Ji Y, Zhang Z, Hou W, Wu M, Wu H, Hu N, Ni M, Tang C, Wu F, Xu H. Enhanced antitumor effect of icariin nanoparticles coated with iRGD functionalized erythrocyte membrane. Eur J Pharmacol. 2022;931:175225.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ke R, Zhen X, Wang HS, Li L, Wang H, Wang S, Xie X. Surface functionalized biomimetic bioreactors enable the targeted starvation-chemotherapy to glioma. J Colloid Interface Sci. 2022;609:307–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou M, Lai W, Li G, Wang F, Liu W, Liao J, Yang H, Liu Y, Zhang Q, Tang Q, Hu C, Huang J, Zhang R. Platelet membrane-coated and VAR2CSA Malaria protein-functionalized nanoparticles for targeted treatment of primary and metastatic Cancer. ACS Appl Mater Interfaces. 2021;13:25635–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chai Z, Hu X, Wei X, Zhan C, Lu L, Jiang K, Su B, Ruan H, Ran D, Fang RH, Zhang L, Lu W. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J Controlled Release: Official J Controlled Release Soc. 2017;264:102–11.

    Article 
    CAS 

    Google Scholar
     

  • Ismail M, Yang W, Li Y, Wang Y, He W, Wang J, Muhammad P, Chaston TB, Rehman FU, Zheng M, Lovejoy DB, Shi B. Biomimetic Dp44mT-nanoparticles selectively induce apoptosis in Cu-loaded glioblastoma resulting in potent growth inhibition. Biomaterials. 2022;289:121760.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Deng J, Yao X, He Y, Li H, Jian Z, Tang Y, Zhang X, Zhang J, Dai H. Bone-targeted erythrocyte-cancer hybrid membrane-camouflaged nanoparticles for enhancing photothermal and hypoxia-activated chemotherapy of bone invasion by OSCC. J Nanobiotechnol. 2021;19:342.

    Article 
    CAS 

    Google Scholar
     

  • Zhang F, Yang Q, Tang S, Jiang S, Zhao Q, Li J, Xu C, Liu J, Fu Y. CD38-targeted and erythrocyte membrane camouflaged nanodrug delivery system for photothermal and chemotherapy in multiple myeloma. Int J Pharm. 2023;643:123241.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo K, Ren S, Zhang H, Cao Y, Zhao Y, Wang Y, Qiu W, Tian Y, Song L, Wang Z. Biomimetic Gold Nanorods modified with erythrocyte membranes for imaging-guided Photothermal/Gene synergistic therapy. ACS Appl Mater Interfaces. 2023;15:25285–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Li Z, Liu L, Li L, Zhang L, Wang Y, Zhao J. Self-Assembly Catalase Nanocomplex conveyed by bacterial vesicles for oxygenated photodynamic therapy and Tumor Immunotherapy. Int J Nanomed. 2022;17:1971–85.

    Article 

    Google Scholar
     

  • Li Y, Tian L, Zhao T, Zhang J. A nanotherapeutic system for gastric cancer suppression by synergistic chemotherapy and immunotherapy based on iPSCs and DCs exosomes, Cancer immunology, immunotherapy. Volume 72. CII; 2023. pp. 1673–83.

  • Pham TT, Chen H, Nguyen PHD, Jayasinghe MK, Le AH, Le MT. Endosomal escape of nucleic acids from extracellular vesicles mediates functional therapeutic delivery. Pharmacol Res. 2023;188:106665.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng S, Xiao F, Chen M, Gao H. Tumor-microenvironment-responsive nanomedicine for enhanced Cancer Immunotherapy, Advanced science (Weinheim, Baden-Wurttemberg, Germany), 9 (2022) e2103836.

  • Boedtkjer E, Pedersen SF. The acidic Tumor Microenvironment as a driver of Cancer. Annu Rev Physiol. 2020;82:103–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Wei L, Ma X, Wang J, Liang S, Chen K, Wu M, Niu L, Zhang Y. pH-sensitive tumor-tropism hybrid membrane-coated nanoparticles for reprogramming the tumor microenvironment and boosting the antitumor immunity. Acta Biomater. 2023;166:470–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Chu Z, Chen B, Ma Y, Xu L, Qian H, Yu Y. Cancer cell membrane-coated upconversion nanoparticles/Zn(x)mn(1-x)S core-shell nanoparticles for targeted photodynamic and chemodynamic therapy of pancreatic cancer, materials today. Bio. 2023;22:100765.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang WR, Wang Y, Lei Y, Zuo L, Jiang A, Wu G, Nie W, Huang LL, Xie HY. Phytochemical Engineered bacterial outer membrane vesicles for photodynamic effects promoted Immunotherapy. Nano Lett. 2022;22:4491–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Zhi S, Ou J, Gao J, Zheng L, Huang M, Du S, Shi L, Tu Y, Cheng K. Cancer Cell membrane-coated nanoparticle co-loaded with photosensitizer and toll-like receptor 7 agonist for the enhancement of combined Tumor Immunotherapy. ACS Nano. 2023;17:16620–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ning S, Dai X, Tang W, Guo Q, Lyu M, Zhu D, Zhang W, Qian H, Yao X, Wang X. Cancer cell membrane-coated C-TiO(2) hollow nanoshells for combined sonodynamic and hypoxia-activated chemotherapy. Acta Biomater. 2022;152:562–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan L, Cao Y, Cheng C, Tang R, Wu N, Zhou Y, Xiong X, He H, Lin X, Jiang Q, Wang X, Guo X, Wang D, Ran H, Ren J, Zhou Y, Hu Z, Li P. Biomimetic, pH-Responsive nanoplatforms for Cancer Multimodal Imaging and Photothermal Immunotherapy. ACS Appl Mater Interfaces. 2023;15:1784–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altıntaş Ö, Saylan Y. Exploring the Versatility of Exosomes: A Review on Isolation, Characterization, Detection Methods, and Diverse Applications, Analytical chemistry, 95 (2023) 16029–16048.

  • Hade MD, Suire CN, Suo Z. An effective peptide-based platform for efficient Exosomal Loading and Cellular Delivery of a microRNA. ACS Appl Mater Interfaces. 2023;15:3851–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Fernández J, Fuente M, Freire. Exosome-like systems: nanotechnology to overcome challenges for targeted cancer therapies. Cancer Lett. 2023;561:216151.

    Article 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES
    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments