segunda-feira, abril 7, 2025
HomeNanotechnologyAsymmetric photooxidation of glycerol to hydroxypyruvic acid over Rb–Ir catalytic pairs on...

Asymmetric photooxidation of glycerol to hydroxypyruvic acid over Rb–Ir catalytic pairs on poly(heptazine imides)


  • OECD–FAO Agricultural Outlook 2020–2029 (OECD, 2020).

  • Werpy, T. A., Holladay, J. E. & White, J. F. Top Value Added Chemicals From Biomass: Results of Screening for Potential Candidates from Sugars and Synthesis Gas (US Department of Energy, 2004).

  • Dodekatos, G., Schünemann, S. & Tüysüz, H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 8, 6301–6333 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., & Della Pina, C. From glycerol to value-added products. Angew. Chem. Int. Ed. 46, 4434–4440 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Dias da Silva Ruy, A. et al. Market prospecting and assessment of the economic potential of glycerol from biodiesel. In Biotechnological Applications of Biomass (eds Basso, T. P. et al.) Ch. 11 (IntechOpen, 2020).

  • Katryniok, B. et al. Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chem. 13, 1960–1979 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Sheng, H. et al. Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode. Nat. Catal. 5, 716–725 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kobori, Y., Myles, D. C. & Whitesides, G. M. Substrate specificity and carbohydrate synthesis using transketolase. J. Org. Chem. 57, 5899–5907 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z., Xiao, C., Lin, S., Tittmann, K. & Dai, S. Multifaceted role of the substrate phosphate group in transketolase catalysis. ACS Catal. 14, 355–365 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Horecker, B. L., Hurwitz, J. & Smyrniotis, P. Z. Xylulose 5-phosphate and the formation of sedoheptulose 7-phosphate with liver transketolase. J. Am. Chem. Soc. 78, 692–694 (1956).

    Article 
    CAS 

    Google Scholar
     

  • Munos, J. W., Pu, X., Mansoorabadi, S. O., Kim, H. J. & Liu, H.-W. A secondary kinetic isotope effect study of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase-catalyzed reaction: evidence for a retroaldol–aldol rearrangement. J. Am. Chem. Soc. 131, 2048–2049 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaeri, J., Wohlgemuth, R. & Woodley, J. M. Semiquantitative process screening for the biocatalytic synthesis of d-xylulose-5-phosphate. Org. Process Res. Dev. 10, 605–610 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Cai, G. et al. Thermodynamic investigation of inhibitor binding to 1-deoxy-d-xylulose-5-phosphate reductoisomerase. ACS Med. Chem. Lett. 3, 496–500 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, M., Meena, B., Yu, A., Sun, C. & Challapalli, S. Advancements in catalysts for glycerol oxidation via photo-/electrocatalysis: a comprehensive review of recent developments. Green Chem. 25, 8411–8443 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, Y. et al. Selective photoelectrochemical oxidation of glycerol to glyceric acid on (002) facets exposed WO3 nanosheets. Angew. Chem. Int. Ed. 63, e202319685 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liu, D. et al. Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nat. Commun. 10, 1779 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teng, Z. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 4, 374–384 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Teng, Z. et al. Atomically dispersed low-valent Au boosts photocatalytic hydroxyl radical production. Nat. Chem. 16, 1250–1260 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Savateev, A., Pronkin, S., Willinger, M. G., Antonietti, M. & Dontsova, D. Towards organic zeolites and inclusion catalysts: Heptazine imide salts can exchange metal cations in the solid state. Chem. Asian J. 12, 1517–1522 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wirnhier, E. et al. Poly(triazine imide) with intercalation of lithium and chloride ions [(C3N3)2(NHxLi1−x)3LiCl]: a crystalline 2D carbon nitride network. Chem. Eur. J. 17, 3213–3221 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlomberg, H. et al. Structural Insights into poly(heptazine imides): a light-storing carbon nitride material for dark photocatalysis. Chem. Mater. 31, 7478–7486 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. H. et al. Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride. J. Mater. Chem. A 2, 9490–9495 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J.-R. et al. Accurate K-edge X-ray photoelectron and absorption spectra of g-C3N4 nanosheets by first-principles simulations and reinterpretations. Phys. Chem. Chem. Phys. 21, 22819–22830 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. Potassium-Ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: visible-light-driven photocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 58, 16644–16650 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kessler, F. K. et al. Functional carbon nitride materials—design strategies for electrochemical devices. Nat. Rev. Mater. 2, 17030 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lin, L., Yu, Z. & Wang, X. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem. Int. Ed. 58, 6164–6175 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lin, L. et al. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 3, 649–655 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Bredas, J.-L. Mind the gap! Mater. Horiz. 1, 17–19 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Vogt, C. & Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, C., Wang, Z., Mao, S., Chen, Z. & Wang, Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts. Chin. J. Catal. 43, 928–955 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H., Cui, Y., Shi, J., Tao, X. & Zhu, G. Porous carbon supported Lewis acid–base sites as metal-free catalysts for the carbonylation of glycerol with urea. Appl. Catal. B 330, 122457 (2023).

    Article 
    CAS 

    Google Scholar
     

  • An, Z. et al. Pt1 enhanced C–H activation synergistic with Ptn catalysis for glycerol cascade oxidation to glyceric acid. Nat. Commun. 13, 5467 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, L. et al. Selective photoelectrocatalytic glycerol oxidation to dihydroxyacetone via enhanced middle hydroxyl adsorption over a Bi2O3-incorporated catalyst. J. Am. Chem. Soc. 144, 7720–7730 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mörsdorf, J.-M. & Ballmann, J. Coordination-induced radical generation: selective hydrogen atom abstraction via controlled Ti–C σ-bond homolysis. J. Am. Chem. Soc. 145, 23452–23460 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Bellotti, P., Huang, H. M., Faber, T. & Glorius, F. Photocatalytic late-stage C–H functionalization. Chem. Rev. 123, 4237–4352 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Fast modulation of d-band holes quantity in the early reaction stages for boosting acidic oxygen evolution. Angew. Chem. Int. Ed. 62, e202308082 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hao, Y. et al. Electrode/electrolyte synergy for concerted promotion of electron and proton transfers toward efficient neutral water oxidation. Angew. Chem. Int. Ed. 62, e202303200 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dai, X. et al. Aerobic oxidative synthesis of formamides from amines and bioderived formyl surrogates. Angew. Chem. Int. Ed. 63, e202402241 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L., Ma, L., Yuan, J., Zhang, X.-M. & Tang, Z. Tuning band structures of Hf-PCN-224(M) for β-carbonyl C(sp3)-H bond activation and difunctionalization: tandem C(sp3) radical cross-coupling through photoredox. Appl. Catal. B 321, 122049 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Teng, Z. et al. Atomically isolated Sb(CN)3 on sp2-c-COFs with balanced hydrophilic and oleophilic sites for photocatalytic C–H activation. Sci. Adv. 10, eadl5432 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, C. R., Yang, X. F., Long, B. & Li, J. A water-promoted mechanism of alcohol oxidation on a Au(111) surface: understanding the catalytic behavior of bulk gold. ACS Catal. 3, 1693–1699 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Huang, X., Guo, Y., Zou, Y. & Jiang, J. Electrochemical oxidation of glycerol to hydroxypyruvic acid on cobalt(oxy) hydroxide by high-valent cobalt redox centers. Appl. Catal. B 309, 121247 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H. J., Lee, J., Green, S. K., Huber, G. W. & Kim, W. B. Selective glycerol oxidation by electrocatalytic dehydrogenation. ChemSusChem 7, 1051–1056 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jedsukontorn, T., Ueno, T., Saito, N. & Hunsom, M. Narrowing band gap energy of defective black TiO2 fabricated by solution plasma process and its photocatalytic activity on glycerol transformation. J. Alloys Compd. 757, 188–199 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Choi, Y.-B., Nunotani, N., Morita, K. & Imanaka, N. Production of hydroxypyruvic acid by glycerol oxidation over Pt/CeO2-ZrO2-Bi2O3-PbO/SBA-16 catalysts. Catalysts 12, 69 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jedsukontorn, T., Saito, N. & Hunsom, M. Photocatalytic behavior of metal-decorated TiO2 and their catalytic activity for transformation of glycerol to value added compounds. Mol. Catal. 432, 160–171 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sun, Y. et al. PtBi intermetallic compounds with enhanced stability towards base-free selective oxidation of glycerol. Ind. Eng. Chem. Res. 62, 17503–17512 (2023).

    Article 

    Google Scholar
     

  • Dou, J. et al. Carbon supported Pt9Sn1 nanoparticles as an efficient nanocatalyst for glycerol oxidation. Appl. Catal. B 180, 78–85 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Q. et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nat. Commun. 12, 483 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y. et al. Solar-driven highly selective conversion of glycerol to dihydroxyacetone using surface atom engineered BiVO4 photoanodes. Nat. Commun. 15, 5475 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments