quinta-feira, dezembro 12, 2024
HomeNanotechnologyAntiferromagnetic spin-torque diode effect in a kagome Weyl semimetal

Antiferromagnetic spin-torque diode effect in a kagome Weyl semimetal


  • Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rippard, W. H., Pufall, M. R., Kaka, S., Russek, S. E. & Silva, T. J. Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, T. et al. Spin-torque and spin-Hall nano-oscillators. Proc. IEEE 104, 1919 (2016).

    Article 

    Google Scholar
     

  • Tulapurkar, A. A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sankey, J. C. et al. Spin-transfer-driven ferromagnetic resonance of individual nanomagnets. Phys. Rev. Lett. 96, 227601 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miwa, S. et al. Highly sensitive nanoscale spin-torque diode. Nat. Mater. 13, 50 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Locatelli, N., Cros, V. & Grollier, J. Spin-torque building blocks. Nat. Mater. 13, 11 (2013).

    Article 

    Google Scholar
     

  • Finocchio, G. et al. Perspectives on spintronic diodes. Appl. Phys. Lett. 118, 160502 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Bonetti, S., Muduli, P., Mancoff, F. & Åkerman, J. Spin torque oscillator frequency versus magnetic field angle: the prospect of operation beyond 65 GHz. Appl. Phys. Lett. 94, 102507 (2009).

    Article 

    Google Scholar
     

  • Houssameddine, D. et al. Spin-torque oscillator using a perpendicular polarizer and a planar free layer. Nat. Mater. 6, 447 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Gomonay, H. V. & Loktev, V. M. Spin transfer and current-induced switching in antiferromagnets. Phys. Rev. B 81, 144427 (2010).

    Article 

    Google Scholar
     

  • Khymyn, R., Lisenkov, I., Tiberkevich, V., Ivanov, B. A. & Slavin, A. Antiferromagnetic THz-frequency Josephson-like oscillator driven by spin current. Sci. Rep. 7, 43705 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sulymenko, O. R. et al. Terahertz-frequency spin Hall auto-oscillator based on a canted antiferromagnet. Phys. Rev. Appl. 8, 064007 (2017).

    Article 

    Google Scholar
     

  • Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Spin current from sub-terahertz-generated antiferromagnetic magnons. Nature 578, 70 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaidya, P. et al. Subterahertz spin pumping from an insulating antiferromagnet. Science 368, 160 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Safin, A. et al. Electrically tunable detector of THz-frequency signals based on an antiferromagnet. Appl. Phys. Lett. 117, 222411 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, D. et al. Electrically tunable terahertz resonance in antiferromagnetic NiO/Pt heterostructures. Phys. Rev. Appl. 20, 014023 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Spin-torque-driven antiferromagnetic resonance. Sci. Adv. 10, eadk7935 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242 (2018).

    Article 

    Google Scholar
     

  • Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482 (2022).

    Article 

    Google Scholar
     

  • Nakatsuji, S. & Arita, R. Topological magnets: functions based on Berry phase and multipoles. Annu. Rev. Condens. Matter Phys. 13, 119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Han, J., Cheng, R., Liu, L., Ohno, H. & Fukami, S. Coherent antiferromagnetic spintronics. Nat. Mater. 22, 684 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360 (2020).

    Article 

    Google Scholar
     

  • Suzuki, M.-T., Koretsune, T., Ochi, M. & Arita, R. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B 95, 094406 (2017).

    Article 

    Google Scholar
     

  • Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt). Phys. Rev. B 95, 075128 (2017).

    Article 

    Google Scholar
     

  • Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Anomalous Nernst and Righi-Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by current. Nature 607, 474 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pal, B. et al. Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin–orbit torque. Sci. Adv. 8, eabo5930 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, G. Q. et al. Quantum sensing and imaging of spin–orbit-torque-driven spin dynamics in the non-collinear antiferromagnet Mn3Sn. Adv. Mater. 34, 2200327 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sakamoto, S. et al. Observation of spontaneous x-ray magnetic circular dichroism in a chiral antiferromagnet. Phys. Rev. B 104, 134431 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yoon, J.-Y. et al. Handedness anomaly in a non-collinear antiferromagnet under spin–orbit torque. Nat. Mater. 22, 1106 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krishnaswamy, G. K. et al. Time-dependent multistate switching of topological antiferromagnetic order in Mn3Sn. Phys. Rev. Appl. 18, 024064 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rippard, W. H. et al. Injection locking and phase control of spin transfer nano-oscillators. Phys. Rev. Lett. 95, 067203 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Georges, B. et al. Coupling efficiency for phase locking of a spin transfer nano-oscillator to a microwave current. Phys. Rev. Lett. 101, 017201 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, B. et al. Giant spin-torque diode sensitivity in the absence of bias magnetic field. Nat. Commun. 7, 11259 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, Y. et al. Anomalous Hall effect–like behavior with in-plane magnetic field in noncollinear antiferromagnetic Mn3Sn films. Adv. Electron. Mater. 5, 1800818 (2019).

    Article 

    Google Scholar
     

  • Yoon, J. et al. Crystal orientation and anomalous Hall effect of sputter-deposited non-collinear antiferromagnetic Mn3Sn thin films. Appl. Phys. Express 13, 013001 (2019).

    Article 

    Google Scholar
     

  • Nomoto, T. & Arita, R. Cluster multipole dynamics in noncollinear antiferromagnets. Phys. Rev. Res. 2, 012045 (2020).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments