sábado, janeiro 18, 2025
HomeNanotechnologyA translational framework to DELIVER nanomedicines to the clinic

A translational framework to DELIVER nanomedicines to the clinic


  • Park, K. The beginning of the end of the nanomedicine hype. J. Control. Release 305, 221–222 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhatia, S. N., Chen, X., Dobrovolskaia, M. A. & Lammers, T. Cancer nanomedicine. Nat. Rev. Cancer 22, 550–556 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Youn, Y. S. & Bae, Y. H. Perspectives on the past, present, and future of cancer nanomedicine. Adv. Drug Deliv. Rev. 130, 3–11 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leong, H. S. et al. On the issue of transparency and reproducibility in nanomedicine. Nat. Nanotechnol. 14, 629–635 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lammers, T. et al. Cancer nanomedicine: is targeting our target? Nat. Rev. Mater. 1, 16069 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barenholz, Y. Doxil®—the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117–134 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shan, X. et al. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm. Sin. B 12, 3028–3048 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • COVID-19 vaccination, world data. WHO https://data.who.int/dashboards/covid19/vaccines?n=c (2024).

  • Mathieu, E. et al. Coronavirus pandemic (COVID-19). OurWorldInData.org https://ourworldindata.org/coronavirus (2020).

  • Milane, L. & Amiji, M. Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: impact on translational nanomedicine. Drug Deliv. Transl. Res. 11, 1309–1315 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhattacharjee, S. & Brayden, D. J. Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients. Expert Opin. Drug Discov. 16, 235–254 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swierczewska, M., Crist, R. M. & McNeil, S. E. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 3–16 (Springer, 2018).

  • Metselaar, J. M. & Lammers, T. Challenges in nanomedicine clinical translation. Drug Deliv. Transl. Res. 10, 721–725 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, H. et al. Cholesterol modulates the physiological response to nanoparticles by changing the composition of protein corona. Nat. Nanotechnol. 18, 1067–1077 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hare, J. I. et al. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv. Drug Deliv. Rev. 108, 25–38 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Germain, M. et al. Delivering the power of nanomedicine to patients today. J. Control. Release 326, 164–171 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, G. H., Gray, A. B. C. & Patra, H. K. Nanomedicine: controlling nanoparticle clearance for translational success. Trends Pharmacol. Sci. 43, 709–711 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kendall, M. & Lynch, I. Long-term monitoring for nanomedicine implants and drugs. Nat. Nanotechnol. 11, 206–210 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crist, R. M. et al. Common pitfalls in nanotechnology: lessons learned from NCI’s Nanotechnology Characterization Laboratory. Integr. Biol. 5, 66–73 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. & Kataoka, K. Chemo-physical strategies to advance the in vivo functionality of targeted nanomedicine: the next generation. J. Am. Chem. Soc. 143, 538–559 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Beraldo-de-Araújo, V. L. et al. Excipient–excipient interactions in the development of nanocarriers: an innovative statistical approach for formulation decisions. Sci. Rep. 9, 10738 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, N., Sun, H., Dong, J. & Ouyang, D. PharmDE: a new expert system for drug–excipient compatibility evaluation. Int. J. Pharm. 607, 120962 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berrecoso, G., Crecente-Campo, J. & Alonso, M. J. Quantification of the actual composition of polymeric nanocapsules: a quality control analysis. Drug Deliv. Transl. Res. 12, 2865–2874 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waterhouse, D. N., Tardi, P. G., Mayer, L. D. & Bally, M. B. A comparison of liposomal formulations of doxorubicin with drug administered in free form: changing toxicity profiles. Drug. Saf. 24, 903–920 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrington, K. J. et al. Phase I–II study of pegylated liposomal cisplatin (SPI-077) in patients with inoperable head and neck cancer. Ann. Oncol. 12, 493–496 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Troiano, G. et al. A quality by design approach to developing and manufacturing polymeric nanoparticle drug products. AAPS J. 18, 1354–1365 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mast, M.-P. et al. Nanomedicine at the crossroads—a quick guide for IVIVC. Adv. Drug Deliv. Rev. 179, 113829 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stillhart, C. et al. PBPK absorption modeling: establishing the in vitro–in vivo link—industry perspective. AAPS 21, 19 (2019).

    Article 

    Google Scholar
     

  • Yuan, D. et al. Physiologically based pharmacokinetic modeling of nanoparticles. J. Pharm. Sci. 108, 58–72 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, M. et al. Advances in 3D bioprinting for cancer biology and precision medicine: from matrix design to application. Adv. Healthc. Mater. 11, 2200690 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cai, R. & Chen, C. The crown and the scepter: roles of the protein corona in nanomedicine. Adv. Mater. 31, 1805740 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Subramaniam, S. et al. Protein adsorption determines pulmonary cell uptake of lipid-based nanoparticles. J. Colloid Interface Sci. 641, 36–47 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).

    Article 

    Google Scholar
     

  • Urbán, P., Liptrott, N. J. & Bremer, S. Overview of the blood compatibility of nanomedicines: a trend analysis of in vitro and in vivo studies. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11, e1546 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jain, P. et al. In-vitro in-vivo correlation (IVIVC) in nanomedicine: iprotein corona the missing link? Biotechnol. Adv. 35, 889–904 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agnihotri, T. G. et al. In vitro–in vivo correlation in nanocarriers: from protein corona to therapeutic implications. J. Control. Release 354, 794–809 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, H. et al. Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures. Acc. Chem. Res. 52, 2445–2461 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tong, F., Wang, Y. & Gao, H. Progress and challenges in the translation of cancer nanomedicines. Curr. Opin. Biotechnol. 85, 103045 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, P. et al. Cancer nanomedicine toward clinical translation: obstacles, opportunities, and future prospects. Med 4, 147–167 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoffman, R. M. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat. Rev. Cancer 15, 451–452 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zushin, P. H., Mukherjee, S. & Wu, J. C. FDA Modernization Act 2.0: transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches. J. Clin. Invest. 133, e175824 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ioannidis, J. P. A., Kim, B. Y. S. & Trounson, A. How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation. Nat. Biomed. Eng. 2, 797–809 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodman, S. N., Fanelli, D. & Ioannidis, J. P. A. What does research reproducibility mean? Sci. Transl. Med. 8, 341ps12 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ke, W. et al. Trends and patterns in cancer nanotechnology research: asurvey of NCI’s caNanoLab and nanotechnology characterization laboratory. Adv. Drug Deliv. Rev. 191, 114591 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paliwal, R., Babu, R. J. & Palakurthi, S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech 15, 1527–1534 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X., Huang, P., Yang, R. & Deng, H. mRNA cancer vaccines: construction and boosting strategies. ACS Nano 17, 19550–19580 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, S. et al. The potential of mRNA vaccines in cancer nanomedicine and immunotherapy. Trends Immunol. 45, 20–31 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin, S. et al. Nanoparticle-based chimeric antigen receptor therapy for cancer immunotherapy. Tissue Eng. Regen. Med. 20, 371–387 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mi, J., Ye, Q. & Min, Y. Advances in nanotechnology development to overcome current roadblocks in CAR-T therapy for solid tumors. Front. Immunol. 13, 849759 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo, Y.-H., Zhao, X.-P. & Fan, X.-X. Nanotechnology-based chimeric antigen receptor T-cell therapy in treating solid tumor. Pharmacol. Res. 184, 106454 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Efficient non-viral CAR-T cell generation via silicon-nanotube-mediated transfection. Mater. Today 63, 8–17 (2023).

    Article 

    Google Scholar
     

  • Hu, T., Kumar, A. R. K., Luo, Y. & Tay, A. Automating CAR-T transfection with micro and nano-technologies. Small Methods https://doi.org/10.1002/smtd.202301300 (2023).

  • López-Estévez, A. M., Lapuhs, P., Pineiro-Alonso, L. & Alonso, M. J. Personalized cancer nanomedicine: overcoming biological barriers for intracellular delivery of biopharmaceuticals. Adv. Mater. 36, 2309355 (2023).

    Article 

    Google Scholar
     

  • Sun, Q., Radosz, M. & Shen, Y. Challenges in design of translational nanocarriers. J. Control. Release 164, 156–169 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DepoCyte—withdrawal of application for variation to marketing authorisation. EMA https://www.ema.europa.eu/en/medicines/human/variation/depocyte (2006).

  • Ramanathan, R. K. et al. Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in patients with advanced solid tumors: a pilot study. Clin. Cancer Res. 23, 3638–3648 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • May, J.-N. et al. Histopathological biomarkers for predicting the tumour accumulation of nanomedicines. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01197-4 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Angeli, F. et al. Optimal use of the non-inferiority trial design. Pharm. Med. 34, 159–165 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shitara, K. et al. Nab-paclitaxel versus solvent-based paclitaxel in patients with previously treated advanced gastric cancer (ABSOLUTE): an open-label, randomised, non-inferiority, phase 3 trial. Lancet Gastroenterol. Hepatol. 2, 277–287 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Fujiwara, Y. et al. A multi-national, randomised, open-label, parallel, phase III non-inferiority study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Br. J. Cancer 120, 475–480 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosaka, Y. et al. Multicenter randomized open-label phase II clinical study comparing outcomes of NK105 and paclitaxel in advanced or recurrent breast cancer. Int. J. Nanomed. 17, 4567 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Miedema, I. H. C. et al. First-in-human imaging of nanoparticle entrapped docetaxel (CPC634) in patients with advanced solid tumors using 89Zr-Df-CPC634 PET/CT. J. Clin. Oncol. 37, 3093 (2019).

    Article 

    Google Scholar
     

  • Atrafi, F. et al. A phase I dose-finding and pharmacokinetics study of CPC634 (nanoparticle entrapped docetaxel) in patients with advanced solid tumors. J. Clin. Oncol. 37, 3026–3026 (2019).

    Article 

    Google Scholar
     

  • Atrafi, F. et al. Intratumoral comparison of nanoparticle entrapped docetaxel (CPC634) with conventional docetaxel in patients with solid tumors. Clin. Cancer Res. 26, 3537–3545 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ingrid, B. et al. CINOVA: a phase II study of CPC634 (nanoparticulate docetaxel) in patients with platinum resistant recurrent ovarian cancer. Int. J. Gynecol. Cancer 33, 1247 (2023).

    Article 

    Google Scholar
     

  • Tinkle, S. et al. Nanomedicines: addressing the scientific and regulatory gap. Ann. N. Y. Acad. Sci. 1313, 35–56 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foulkes, R. et al. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater. Sci. 8, 4653–4664 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hemmrich, E. & McNeil, S. Active ingredient vs excipient debate for nanomedicines. Nat. Nanotechnol. 18, 692–695 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hertig, J. B. et al. Tackling the challenges of nanomedicines: are we ready? Am. J. Health Syst. Pharm. 78, 1047–1056 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fogel, D. B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: a review. Contemp. Clin. Trials Commun. 11, 156–164 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Center for Drug Evaluation and Research Drug Products, Including Biological Products, that Contain Nanomaterials (US Food & Drug Administration, 2022); https://www.fda.gov/media/157812/download

  • Van Norman, G. A. Drugs, devices, and the FDA: Part 1: an overview of approval processes for drugs. J. Am. Coll. Cardiol. 1, 170–179 (2016).


    Google Scholar
     

  • Klein, K. et al. A pragmatic regulatory approach for complex generics through the US FDA 505 (j) or 505 (b)(2) approval pathways. Ann. N. Y. Acad. Sci. 1502, 5–13 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elnathan, R., Tay, A., Voelcker, N. H. & Chiappini, C. The start-ups taking nanoneedles into the clinic. Nat. Nanotechnol. 17, 807–811 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, A. et al. Rapid response through the entrepreneurial capabilities of academic scientists. Nat. Nanotechnol. 17, 802–807 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, V. J., Bliemel, M., Shippam, C. & Maine, E. Endowing university spin-offs pre-formation: entrepreneurial capabilities for scientist-entrepreneurs. Technovation 96-97, 102153 (2020).

    Article 

    Google Scholar
     

  • Dayton, L. Coronavirus vaccine front-runner Moderna puts MIT chemist-entrepreneur Robert Langer in the spotlight. Nature Index https://www.nature.com/nature-index/news/coronavirus-vaccine-front-runner-moderna-puts-mit-chemist-entrepreneur-robert-langer-in-the-spotlight (2020).

  • Langer, R. A personal account of translating discoveries in an academic lab. Nat. Biotechnol. 31, 487–489 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prokesch, S. The Edison of medicine. Harv. Bus. Rev. 95, 134–143 (2017).


    Google Scholar
     

  • Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eaton, M. A. W., Levy, L. & Fontaine, O. M. A. Delivering nanomedicines to patients: a practical guide. Nanomedicine 11, 983–992 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gold, E. R. What the COVID-19 pandemic revealed about intellectual property. Nat. Biotechnol. 40, 1428–1430 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faria, M. et al. Minimum information reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kilkenny, C. et al. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J. Pharmacol. Pharmacother. 1, 94–99 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Center for Drug Evaluation and Research & Center for Biologics Evaluation and Research Guidance for Industry: Environment Assessment of Human Drug and Biologics Applications (US Food & Drug Administration, 1998); https://www.fda.gov/media/70809/download

  • Center for Drug Evaluation and Research Guidance for Industry: Drug Products, Including Biological Products, that Contain Nanomaterials (US Food & Drug Administration, 2022); https://www.fda.gov/media/157812/download

  • Chetwynd, A. J., Wheeler, K. E. & Lynch, I. Best practice in reporting corona studies: Minimum information about Nanomaterial Biocorona Experiments (MINBE). Nano Today 28, 100758 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadjidemetriou, M. et al. In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles. ACS Nano 9, 8142–8156 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ban, Z. et al. Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Proc. Natl Acad. Sci. USA 117, 10492–10499 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hickman, R. J. et al. Self-driving laboratories: a paradigm shift in nanomedicine development. Matter 6, 1071–1081 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arden, N. S. et al. Industry 4.0 for pharmaceutical manufacturing: preparing for the smart factories of the future. Int. J. Pharm. 602, 120554 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Young, H. et al. Toward the scalable, rapid, reproducible, and cost-effective synthesis of personalized nanomedicines at the point of care. Nano Lett. 24, 920–928 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Vlieger, J. S. B. et al. Report of the AAPS guidance forum on the FDA draft guidance for industry: ‘drug products, including biological products, that contain nanomaterials’. AAPS J. 21, 56 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Marchant, G. E., Sylvester, D. J., Abbott, K. W. & Danforth, T. L. International harmonization of regulation of nanomedicine. Stud. Ethics Law Technol. https://doi.org/10.2202/1941-6008.1120 (2010).

  • RELATED ARTICLES
    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments