sábado, fevereiro 22, 2025
HomeNanotechnologyA shark-derived broadly neutralizing nanobody targeting a highly conserved epitope on the...

A shark-derived broadly neutralizing nanobody targeting a highly conserved epitope on the S2 domain of sarbecoviruses | Journal of Nanobiotechnology


  • Vaughan A. Omicron emerges. New Sci. 2021;252(3363):7. https://doi.org/10.1016/S0262-4079(21)02140-0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kopsidas I, Karagiannidou S, Kostaki EG, Kousi D, Douka E, Sfikakis PP, Moustakidis S, Kokkotis C, Tsaopoulos D, Tseti I, Zaoutis T, Paraskevis D. Global Distribution, dispersal patterns, and Trend of several Omicron subvariants of SARS-CoV-2 across the Globe. Trop Med Infect Disease. 2022;7(11):373. https://doi.org/10.3390/tropicalmed7110373.

    Article 

    Google Scholar
     

  • Tsujino S, Deguchi S, Nomai T, Padilla-Blanco M, Plianchaisuk A, Wang L, Begum MSTM, Uriu K, Mizuma K, Nao N, Kojima I, Tsubo T, Li J, Matsumura Y, Nagao M, Oda Y, Tsuda M, Anraku Y, Kita S, Yajima H, Sasaki‐Tabata K, Guo Z, Hinay AA, Yoshimatsu K, Yamamoto Y, Nagamoto T, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Nasser H, Jonathan M, Putri O, Kim Y, Chen L, Suzuki R, Tamura T, Maenaka K, Irie T, Matsuno K, Tanaka S, Ito J, Ikeda T, Takayama K, Zahradnik J, Hashiguchi T, Fukuhara T, Sato K. Virological characteristics of the SARS‐CoV‐2 omicron EG.5.1 variant. Microbiol Immunol. 2024. https://doi.org/10.1111/1348-0421.13165.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Q, Guo Y, Liu L, Schwanz LT, Li Z, Nair MS, Ho J, Zhang RM, Iketani S, Yu J, Huang Y, Qu Y, Valdez R, Lauring AS, Huang Y, Gordon A, Wang HH, Liu L, Ho DD. Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike. Nature. 2023;624(7992):639–44. https://doi.org/10.1038/s41586-023-06750-w.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Dopfer-Jablonka A, Cossmann A, Stankov MV, Graichen L, Moldenhauer A-S, Fichter C, Aggarwal A, Turville SG, Behrens GMN, Pöhlmann S, Hoffmann M. Rapid spread of the SARS-CoV-2 JN.1 lineage is associated with increased neutralization evasion. iScience. 2024;27(6):109904. https://doi.org/10.1016/j.isci.2024.109904.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB, Malyutin AG, Sharaf NG, Huey-Tubman KE, Lee YE, Robbiani DF, Nussenzweig MC, West AP, Jr.;, Bjorkman PJ. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 2020, 588 (7839), 682–687. https://doi.org/10.1038/s41586-020-2852-1

  • Dong J, Huang B, Jia Z, Wang B, Gallolu Kankanamalage S, Titong A, Liu Y. Development of multi-specific humanized llama antibodies blocking SARS-CoV-2/ACE2 interaction with high affinity and avidity. Emerg Microbes Infections. 2020;9(1):1034–6. https://doi.org/10.1080/22221751.2020.1768806.

    Article 
    CAS 

    Google Scholar
     

  • Esparza TJ, Martin NP, Anderson GP, Goldman ER, Brody DL. High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme. Sci Rep. 2020;10(1):22370. https://doi.org/10.1038/s41598-020-79036-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanke L, Vidakovics Perez L, Sheward DJ, Das H, Schulte T, Moliner-Morro A, Corcoran M, Achour A, Karlsson Hedestam GB, Hällberg BM, Murrell B, McInerney GM. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat Commun. 2020;11(1). https://doi.org/10.1038/s41467-020-18174-5.

  • Huo J, Le Bas A, Ruza RR, Duyvesteyn HME, Mikolajek H, Malinauskas T, Tan TK, Rijal P, Dumoux M, Ward PN, Ren J, Zhou D, Harrison PJ, Weckener M, Clare DK, Vogirala VK, Radecke J, Moynie L, Zhao Y, Gilbert-Jaramillo J, Knight ML, Tree JA, Buttigieg KR, Coombes N, Elmore MJ, Carroll MW, Carrique L, Shah PNM, James W, Townsend AR, Stuart DI, Owens RJ, Naismith JH. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nature structural & molecular biology 2020, https://doi.org/10.1038/s41594-020-0469-6

  • Cao Y, Yisimayi A, Jian F, Song W, Xiao T, Wang L, Du S, Wang J, Li Q, Chen X, Yu Y, Wang P, Zhang Z, Liu P, An R, Hao X, Wang Y, Wang J, Feng R, Sun H, Zhao L, Zhang W, Zhao D, Zheng J, Yu L, Li C, Zhang N, Wang R, Niu X, Yang S, Song X, Chai Y, Hu Y, Shi Y, Zheng L, Li Z, Gu Q, Shao F, Huang W, Jin R, Shen Z, Wang Y, Wang X, Xiao J, Xie XS. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature. 2022;608(7923):593–602. https://doi.org/10.1038/s41586-022-04980-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao Y, Jian F, Wang J, Yu Y, Song W, Yisimayi A, Wang J, An R, Chen X, Zhang N, Wang Y, Wang P, Zhao L, Sun H, Yu L, Yang S, Niu X, Xiao T, Gu Q, Shao F, Hao X, Xu Y, Jin R, Shen Z, Wang Y, Xie XS. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature. 2023;614(7948):521–9. https://doi.org/10.1038/s41586-022-05644-7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Y, Wang J, Jian F, Xiao T, Song W, Yisimayi A, Huang W, Li Q, Wang P, An R, Wang J, Wang Y, Niu X, Yang S, Liang H, Sun H, Li T, Yu Y, Cui Q, Liu S, Yang X, Du S, Zhang Z, Hao X, Shao F, Jin R, Wang X, Xiao J, Wang Y, Xie XS. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature. 2021. https://doi.org/10.1038/s41586-021-04385-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurlburt NK, Homad LJ, Sinha I, Jennewein MF, MacCamy AJ, Wan Y-H, Boonyaratanakornkit J, Sholukh AM, Jackson AM, Zhou P, Burton DR, Andrabi R, Ozorowski G, Ward AB, Stamatatos L, Pancera M, McGuire AT. Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit. Commun Biology. 2022;5(1). https://doi.org/10.1038/s42003-022-03262-7.

  • Guo L, Lin S, Chen Z, Cao Y, He B, Lu G. Targetable elements in SARS-CoV-2 S2 subunit for the design of pan-coronavirus fusion inhibitors and vaccines. Signal Transduct Target Therapy. 2023;8(1). https://doi.org/10.1038/s41392-023-01472-x.

  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–8. https://doi.org/10.1038/363446a0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature. 1995;374(6518):168–73. https://doi.org/10.1038/374168a0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goodchild SA, Dooley H, Schoepp RJ, Flajnik M, Lonsdale SG. Isolation and characterisation of Ebolavirus-specific recombinant antibody fragments from murine and shark immune libraries. Mol Immunol. 2011;48(15–16):2027–37. https://doi.org/10.1016/j.molimm.2011.06.437.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu JL, Zabetakis D, Brown JC, Anderson GP, Goldman ER. Thermal stability and refolding capability of shark derived single domain antibodies. Mol Immunol. 2014;59(2):194–9. https://doi.org/10.1016/j.molimm.2014.02.014.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahbarizadeh F, Rasaee MJ, Forouzandeh-Moghadam M, Allameh AA. High expression and purification of the recombinant camelid anti-MUC1 single domain antibodies in Escherichia coli. Protein Expr Purif. 2005;44(1):32–8. https://doi.org/10.1016/j.pep.2005.04.008.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahbarizadeh F, Rasaee MJ, Forouzandeh M, Allameh AA. Over expression of anti-MUC1 single-domain antibody fragments in the yeast Pichia pastoris. Mol Immunol. 2006;43(5):426–35. https://doi.org/10.1016/j.molimm.2005.03.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discovery Today. 2016;21(7):1076–113. https://doi.org/10.1016/j.drudis.2016.04.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bathula NV, Bommadevara H, Hayes JM, Nanobodies. The future of antibody-based Immune therapeutics. Cancer Biother Radiopharm. 2021;36(2):109–22. https://doi.org/10.1089/cbr.2020.3941.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng B, Chen Z, Sun J, Xu T, Wang Q, Yi H, Niu X, Zhu J, Fan M, Hou R, Shao Y, Huang S, Li C, Hu P, Zheng P, He P, Luo J, Yan Q, Xiong X, Liu J, Zhao J, Chen L. A class of Shark-Derived single-domain antibodies can broadly neutralize SARS-Related coronaviruses and the structural basis of neutralization and omicron escape. Small Methods. 2022;6(7):e2200387. https://doi.org/10.1002/smtd.202200387.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng C, Evans JP, King T, Zheng YM, Oltz EM, Whelan SPJ, Saif LJ, Peeples ME, Liu SL. SARS-CoV-2 spreads through cell-to-cell transmission. Proc Natl Acad Sci U S A. 2022;119(1). https://doi.org/10.1073/pnas.2111400119.

  • Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, Ying T, Liu S, Shi Z, Jiang S, Lu L. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol. 2020;17(7):765–7. https://doi.org/10.1038/s41423-020-0374-2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto D, Sauer MM, Czudnochowski N, SiongLow4 J, Tortorici MA, Housley MP, Noack J, Walls AC; JohnE.Bowen;, Guarino B, Rosen LE, Iulio Jd, JosipaJerak; Kaiser H, Islam S, Jaconi S, Sprugasci N, Culap K, Abdelnabi R, Foo C, Coelmont L, Bartha I, Bianchi S, Silacci-Fregni C, Bassi J, Marzi R, EneidaVetti AC, Ceschi A, Ferrari P, Cippà PE, Giannini O, Ceruti S, Garzoni C, AgostinoRiva; Benigni F, Cameroni E, Piccoli L, Pizzuto MS, Smithey M, Hong D, Telenti A, Lempp FA, Neyts J, Havenar-Daughton C, Lanzavecchia A, Sallusto F, Snell G, Virgin HW, Beltramello M, DavideCorti, Veesler. D., Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science 2021, 373, 1109–1116.

  • Sauer MM, Tortorici MA, Park Y-J, Walls AC, Homad L, Acton OJ, Bowen JE, Wang C, Xiong X, de van der Schueren W, Quispe J, Hoffstrom BG, Bosch B-J, McGuire AT, Veesler D. Structural basis for broad coronavirus neutralization. Nat Struct Mol Biol. 2021;28(6):478–86. https://doi.org/10.1038/s41594-021-00596-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun X, Yi C, Zhu Y, Ding L, Xia S, Chen X, Liu M, Gu C, Lu X, Fu Y, Chen S, Zhang T, Zhang Y, Yang Z, Ma L, Gu W, Hu G, Du S, Yan R, Fu W, Yuan S, Qiu C, Zhao C, Zhang X, He Y, Qu A, Zhou X, Li X, Wong G, Deng Q, Zhou Q, Lu H, Ling Z, Ding J, Lu L, Xu J, Xie Y, Sun B. Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2. Nat Microbiol. 2022;7(7):1063–74. https://doi.org/10.1038/s41564-022-01155-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dacon C, Tucker C, Peng L, Lee C-CD, Lin T-H, Yuan M, Cong Y, Wang L, Purser L, Williams JK, Pyo C-W, Kosik I, Hu Z, Zhao M, Mohan D, Cooper AJR, Peterson M, Skinner J, Dixit S, Kollins E, Huzella L, Perry D, Byrum R, Lembirik S, Drawbaugh D, Eaton B, Zhang Y, Yang ES, Chen M, Leung K, Weinberg RS, Pegu A, Geraghty DE, Davidson E, Douagi I, Moir S, Yewdell JW, Schmaljohn C, Crompton PD, Holbrook MR, Nemazee D, Mascola JR, Wilson IA, Tan. J., Broadly neutralizing antibodies target the coronavirus fusion peptide. Science 2022, 377, 728–735.

  • Rao L, Xia S, Xu W, Tian R, Yu G, Gu C, Pan P, Meng Q-F, Cai X, Qu D, Lu L, Xie Y, Jiang S, Chen X. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc Natl Acad Sci. 2020;117(44):27141–7. https://doi.org/10.1073/pnas.2014352117.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng Q-F, Tai W, Tian M, Zhuang X, Pan Y, Lai J, Xu Y, Xu Z, Li M, Zhao G, Yu G-T, Yu G, Chen R, Jin N, Li X, Cheng G, Chen X, Rao L. Inhalation delivery of dexamethasone with iSENDnanoparticles attenuates the COVID-19 cytokine stormin mice and nonhuman primates. Sci Adv. 2023;9:eadg3277. https://doi.org/10.1002/adma.202207875.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao C, Pan Y, Yu G, Zhao XZ, Chen X, Rao L. Vesicular antibodies: shedding light on antibody therapeutics with cell membrane nanotechnology. Adv Mater. 2023;35(12). https://doi.org/10.1002/adma.202207875.

  • Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S, Qin C, Sun F, Shi Z, Zhu Y, Jiang S, Lu L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020;30(4):343–55. https://doi.org/10.1038/s41422-020-0305-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovalenko OV, Olland A, Piche-Nicholas N, Godbole A, King D, Svenson K, Calabro V, Muller MR, Barelle CJ, Somers W, Gill DS, Mosyak L, Tchistiakova L. Atypical antigen recognition mode of a shark immunoglobulin new antigen receptor (IgNAR) variable domain characterized by humanization and structural analysis. J Biol Chem. 2013;288(24):17408–19. https://doi.org/10.1074/jbc.M112.435289.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu B, Niu X, Deng Y, Zhang Z, Wang Y, Gao X, Liang H, Li Z, Wang Q, Cheng Y, Chen Q, Huang S, Pan Y, Su M, Lin X, Niu C, Chen Y, Yang W, Zhang Y, Yan Q, He J, Zhao J, Chen L, Xiong X. An unconventional VH1-2 antibody tolerates escape mutations and shows an antigenic hotspot on SARS-CoV-2 spike. Cell Rep. 2024;43(6):114265. https://doi.org/10.1016/j.celrep.2024.114265.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments