domingo, janeiro 19, 2025
HomeNanotechnologyA cascade X-ray energy converting approach toward radio-afterglow cancer theranostics

A cascade X-ray energy converting approach toward radio-afterglow cancer theranostics


  • Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Waterhouse, D. J., Fitzpatrick, C. R. M., Pogue, B. W., O’Connor, J. P. B. & Bohndiek, S. E. A roadmap for the clinical implementation of optical-imaging biomarkers. Nat. Biomed. Eng. 3, 339–353 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • So, M. K., Xu, C., Loening, A. M., Gambhir, S. S. & Rao, J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol. 24, 339–343 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Y. & Pu, K. Molecular probes for autofluorescence-free optical imaging. Chem. Rev. 121, 13086–13131 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miao, Q. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 35, 1102–1110 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • le Masne de Chermont, Q. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl Acad. Sci. USA 104, 9266–9271 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, Y. et al. A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nat. Commun. 10, 2064 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, L. et al. H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo. Nat. Commun. 11, 446 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu, R. et al. Afterglow/photothermal bifunctional polymeric nanoparticles for precise postbreast-conserving surgery adjuvant therapy and early recurrence theranostic. Nano Lett. 23, 4216–4225 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W. et al. Near-infrared afterglow luminescence of chlorin nanoparticles for ultrasensitive in vivo imaging. J. Am. Chem. Soc. 144, 6719–6726 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni, X. et al. Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumour-to-liver signal ratio for promoted image-guided cancer surgery. Nano Lett. 19, 318–330 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, X. et al. Leveraging long-distance singlet-oxygen transfer for bienzyme-locked afterglow imaging of intratumoral granule enzymes. J. Am. Chem. Soc. 146, 17393–17403 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maldiney, T. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13, 418–426 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. LiGa5O8:Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumours. Mater. Horiz. 4, 1092–1101 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pei, P. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 16, 1011–1018 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence. Angew. Chem. Int. Ed. 54, 1770–1774 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Li, J., Cheng, F., Huang, H., Li, L. & Zhu, J. J. Nanomaterial-based activatable imaging probes: from design to biological applications. Chem. Soc. Rev. 44, 7855–7880 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. & Pu, K. Molecular substrates for the construction of afterglow imaging probes in disease diagnosis and treatment. Chem. Soc. Rev. 52, 4549–4566 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, J. et al. Molecular radio afterglow probes for cancer radiodynamic theranostics. Nat. Mater. 22, 1421–1429 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, J. et al. Chemiluminescent probes with long-lasting high brightness for in vivo imaging of neutrophils. Angew. Chem. Int. Ed. 61, e202203235 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wei, X. et al. Highly bright near-infrared chemiluminescent probes for cancer imaging and laparotomy. Angew. Chem. Int. Ed. 62, e202213791 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Z. et al. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 46, 915–1016 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, W. et al. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. Nat. Mater. 21, 210–216 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, X. et al. TADF molecules with π-extended acceptors for simplified high-efficiency blue and white organic light-emitting diodes. Chem 8, 1705–1719 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lippert, A. R., Van de Bittner, G. C. & Chang, C. J. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc. Chem. Res. 44, 793–804 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. Z. et al. Low dose of X-ray-excited long-lasting luminescent concave nanocubes in highly passive targeting deep-seated hepatic tumours. Adv. Mater. 31, e1905087 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lo, S. S. et al. Stereotactic body radiation therapy: a novel treatment modality. Nat. Rev. Clin. Oncol. 7, 44–54 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hymes, S. R., Strom, E. A. & Fife, C. Radiation dermatitis: clinical presentation, pathophysiology, and treatment 2006. J. Am. Acad. Dermatol. 54, 28–46 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES
    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments