quinta-feira, fevereiro 27, 2025
HomeNanotechnologyA bioinspired polymeric membrane-enclosed insulin crystal achieves long-term, self-regulated drug release for...

A bioinspired polymeric membrane-enclosed insulin crystal achieves long-term, self-regulated drug release for type 1 diabetes therapy


  • Paine, P. L., Moore, L. C. & Horowitz, S. B. Nuclear envelope permeability. Nature 254, 109–114 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ungricht, R. & Kutay, U. Mechanisms and functions of nuclear envelope remodelling. Nat. Rev. Mol. Cell Biol. 18, 229–245 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mekhail, K. & Moazed, D. The nuclear envelope in genome organization, expression and stability. Nat. Rev. Mol. Cell Biol. 11, 317–328 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohno, M., Fornerod, M. & Mattaj, I. W. Nucleocytoplasmic transport: the last 200 nanometers. Cell 92, 327–336 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat. Rev. Mol. Cell Biol. 4, 757–766 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terry, L. J., Shows, E. B. & Wente, S. R. Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318, 1412–1416 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wente, S. R. & Rout, M. P. The nuclear pore complex and nuclear transport. CSH Perspect. Biol. 2, a000562 (2010).

    CAS 

    Google Scholar
     

  • Mudumbi, K. C. et al. Nucleoplasmic signals promote directed transmembrane protein import simultaneously via multiple channels of nuclear pores. Nat. Commun. 11, 2184 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohr, D., Frey, S., Fischer, T., Güttler, T. & Görlich, D. Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J. 28, 2541–2553 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahms, M., Lehrich, P., Hüve, J., Sanetra, N. & Peters, R. Binding site distribution of nuclear transport receptors and transport complexes in single nuclear pore complexes. Traffic 10, 1228–1242 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakielny, S. & Dreyfuss, G. Transport of proteins and RNAs in and out of the nucleus. Cell 99, 677–690 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Görlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Macara, I. G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dalbey, D. & von Heijne, G. (eds) Protein Targeting, Transport, and Translocation (Elsevier, 2002).

  • Hinshaw, J. E. & Milligan, R. A. Nuclear pore complexes exceeding eightfold rotational symmetry. J. Struct. Biol. 141, 259–268 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306, 1387–1390 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim, R. Y. et al. Flexible phenylalanine–glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA 103, 9512–9517 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panté, N. & Kann, M. Nuclear pore complex is able to transport macromolecules with diameters of ~39 nm. Mol. Biol. Cell 13, 425–434 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosako, H. & Imamoto, N. Phosphorylation of nucleoporins: signal transduction-mediated regulation of their interaction with nuclear transport receptors. Nucleus 1, 1026–1035 (2010).

    Article 

    Google Scholar
     

  • Komeili, A. & O’Shea, E. K. Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284, 977–980 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Souza, C. P. & Osmani, S. A. Mitosis, not just open or closed. Eukaryot. Cell 6, 1521–1527 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Z., Hueckel, T., Irvine, W. T. M. & Sacanna, S. Transmembrane transport in inorganic colloidal cell-mimics. Nature 597, 220–224 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, S. et al. Voltage-mediated water dynamics enables on-demand transport of sugar molecules in two-dimensional channels. Angew. Chem. Int. Ed. Engl. 62, e202309024 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, J., Liu, G., Han, Y. & Jin, W. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Møller, N. Ketone body, 3-hydroxybutyrate: minor metabolite–major medical manifestations. J. Clin. Endocrinol. Metab. 105, dgaa370 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Malaisse, W. J. et al. Ketone bodies and islet function: 45Ca handling, insulin synthesis, and release. Am. J. Physiol. 259, E117–E122 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Hirobata, T. et al. Serum ketone body measurement in patients with diabetic ketoacidosis. Diabetol. Int. 13, 624–630 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laracuente, M.-L., Yu, M. H. & McHugh, K. J. Zero-order drug delivery: state of the art and future prospects. J. Control. Release 327, 834–856 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W. et al. Clinical translation of long-acting drug delivery formulations. Nat. Rev. Mater. 7, 406–420 (2022).

    Article 

    Google Scholar
     

  • Teng, R. et al. Comparison of protocols to reduce diabetic ketoacidosis in patients with type 1 diabetes prescribed a sodium–glucose cotransporter 2 inhibitor. Diabetes Spectr. 34, 42–51 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Sci. Adv. 5, eaaw4357 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayala, J. E. et al. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis. Models Mech. 3, 525–534 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. Y. et al. Persicarin isolated from Oenanthe javanica protects against diabetes-induced oxidative stress and inflammation in the liver of streptozotocin-induced type 1 diabetic mice. Exp. Ther. Med. 13, 1194–1202 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krause, M. P. et al. Diabetic myopathy differs between Ins2Akita+/− and streptozotocin-induced type 1 diabetic models. J. Appl. Physiol. 106, 1650–1659 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeo, H. J. et al. Protective effects of Tat-DJ-1 protein against streptozotocin-induced diabetes in a mice model. BMB Rep. 51, 362–367 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mo, J. et al. Blood metabolic and physiological profiles of Bama miniature pigs at different growth stages. Porcine Health Manag. 8, 35 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments