Paine, P. L., Moore, L. C. & Horowitz, S. B. Nuclear envelope permeability. Nature 254, 109–114 (1975).
Ungricht, R. & Kutay, U. Mechanisms and functions of nuclear envelope remodelling. Nat. Rev. Mol. Cell Biol. 18, 229–245 (2017).
Mekhail, K. & Moazed, D. The nuclear envelope in genome organization, expression and stability. Nat. Rev. Mol. Cell Biol. 11, 317–328 (2010).
Ohno, M., Fornerod, M. & Mattaj, I. W. Nucleocytoplasmic transport: the last 200 nanometers. Cell 92, 327–336 (1998).
Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat. Rev. Mol. Cell Biol. 4, 757–766 (2003).
Terry, L. J., Shows, E. B. & Wente, S. R. Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318, 1412–1416 (2007).
Wente, S. R. & Rout, M. P. The nuclear pore complex and nuclear transport. CSH Perspect. Biol. 2, a000562 (2010).
Mudumbi, K. C. et al. Nucleoplasmic signals promote directed transmembrane protein import simultaneously via multiple channels of nuclear pores. Nat. Commun. 11, 2184 (2020).
Mohr, D., Frey, S., Fischer, T., Güttler, T. & Görlich, D. Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J. 28, 2541–2553 (2009).
Kahms, M., Lehrich, P., Hüve, J., Sanetra, N. & Peters, R. Binding site distribution of nuclear transport receptors and transport complexes in single nuclear pore complexes. Traffic 10, 1228–1242 (2009).
Nakielny, S. & Dreyfuss, G. Transport of proteins and RNAs in and out of the nucleus. Cell 99, 677–690 (1999).
Görlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).
Macara, I. G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594 (2001).
Dalbey, D. & von Heijne, G. (eds) Protein Targeting, Transport, and Translocation (Elsevier, 2002).
Hinshaw, J. E. & Milligan, R. A. Nuclear pore complexes exceeding eightfold rotational symmetry. J. Struct. Biol. 141, 259–268 (2003).
Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306, 1387–1390 (2004).
Lim, R. Y. et al. Flexible phenylalanine–glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA 103, 9512–9517 (2006).
Panté, N. & Kann, M. Nuclear pore complex is able to transport macromolecules with diameters of ~39 nm. Mol. Biol. Cell 13, 425–434 (2002).
Kosako, H. & Imamoto, N. Phosphorylation of nucleoporins: signal transduction-mediated regulation of their interaction with nuclear transport receptors. Nucleus 1, 1026–1035 (2010).
Komeili, A. & O’Shea, E. K. Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284, 977–980 (1999).
De Souza, C. P. & Osmani, S. A. Mitosis, not just open or closed. Eukaryot. Cell 6, 1521–1527 (2007).
Xu, Z., Hueckel, T., Irvine, W. T. M. & Sacanna, S. Transmembrane transport in inorganic colloidal cell-mimics. Nature 597, 220–224 (2021).
Zhu, S. et al. Voltage-mediated water dynamics enables on-demand transport of sugar molecules in two-dimensional channels. Angew. Chem. Int. Ed. Engl. 62, e202309024 (2023).
Shen, J., Liu, G., Han, Y. & Jin, W. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).
Møller, N. Ketone body, 3-hydroxybutyrate: minor metabolite–major medical manifestations. J. Clin. Endocrinol. Metab. 105, dgaa370 (2020).
Malaisse, W. J. et al. Ketone bodies and islet function: 45Ca handling, insulin synthesis, and release. Am. J. Physiol. 259, E117–E122 (1990).
Hirobata, T. et al. Serum ketone body measurement in patients with diabetic ketoacidosis. Diabetol. Int. 13, 624–630 (2022).
Laracuente, M.-L., Yu, M. H. & McHugh, K. J. Zero-order drug delivery: state of the art and future prospects. J. Control. Release 327, 834–856 (2020).
Li, W. et al. Clinical translation of long-acting drug delivery formulations. Nat. Rev. Mater. 7, 406–420 (2022).
Teng, R. et al. Comparison of protocols to reduce diabetic ketoacidosis in patients with type 1 diabetes prescribed a sodium–glucose cotransporter 2 inhibitor. Diabetes Spectr. 34, 42–51 (2021).
Wang, J. et al. Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Sci. Adv. 5, eaaw4357 (2019).
Ayala, J. E. et al. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis. Models Mech. 3, 525–534 (2010).
Lee, J. Y. et al. Persicarin isolated from Oenanthe javanica protects against diabetes-induced oxidative stress and inflammation in the liver of streptozotocin-induced type 1 diabetic mice. Exp. Ther. Med. 13, 1194–1202 (2017).
Krause, M. P. et al. Diabetic myopathy differs between Ins2Akita+/− and streptozotocin-induced type 1 diabetic models. J. Appl. Physiol. 106, 1650–1659 (2009).
Yeo, H. J. et al. Protective effects of Tat-DJ-1 protein against streptozotocin-induced diabetes in a mice model. BMB Rep. 51, 362–367 (2018).
Mo, J. et al. Blood metabolic and physiological profiles of Bama miniature pigs at different growth stages. Porcine Health Manag. 8, 35 (2022).