Davis, V. A. et al. Phase behavior and rheology of SWNTs in superacids. Macromolecules 37, 154–160 (2004).
Timasheff, S. N. & Inoue, H. Preferential binding of solvent components to proteins in mixed water–organic solvent systems. Biochemistry 7, 2501–2513 (1968).
Finney, J. & Soper, A. Solvent structure and perturbations in solutions of chemical and biological importance. Chem. Soc. Rev. 23, 1–10 (1994).
Nemoto, N., Schrag, J. L., Ferry, J. D. & Fulton, R. W. Infinite‐dilution viscoelastic properties of tobacco mosaic virus. Biopolymers 14, 409–417 (1975).
Clancy, A. J. et al. Reductive dissolution of supergrowth carbon nanotubes for tougher nanocomposites by reactive coagulation spinning. Nanoscale 9, 8764–8773 (2017).
Davis, V. A. et al. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat. Nanotechnol. 4, 830–834 (2009).
Clancy, A. J. et al. Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev. 118, 7363–7408 (2018).
Eichmann, S. L., Anekal, S. G. & Bevan, M. A. Electrostatically confined nanoparticle interactions and dynamics. Langmuir 24, 714–721 (2008).
Batista, C. A. S., Larson, R. G. & Kotov, N. A. Nonadditivity of nanoparticle interactions. Science 350, 1242477 (2015).
Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018).
Cullen, P. L. et al. Ionic solutions of two-dimensional materials. Nat. Chem. 9, 244–249 (2017).
Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).
Prehal, C. et al. Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in situ small-angle X-ray scattering. Energy Environ. Sci. 8, 1725–1735 (2015).
Prehal, C. et al. Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nat. Energy 2, 1–8 (2017).
Deschamps, M. et al. Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR. Nat. Mater. 12, 351–358 (2013).
Forse, A. C., Merlet, C. I., Griffin, J. M. & Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016).
Kralchevsky, P. A., Danov, K. D. & Basheva, E. S. Hydration force due to the reduced screening of the electrostatic repulsion in few-nanometer-thick films. Curr. Opin. Colloid Interf. Sci. 16, 517–524 (2011).
Gavryushov, S. & Zielenkiewicz, P. Electrostatic potential of B-DNA: effect of interionic correlations. Biophys. J. 75, 2732–2742 (1998).
Gavryushov, S. Dielectric saturation of the ion hydration shell and interaction between two double helices of DNA in mono-and multivalent electrolyte solutions: foundations of the ε-modified Poisson–Boltzmann theory. J. Phys. Chem. B 111, 5264–5276 (2007).
Zobel, M., Neder, R. B. & Kimber, S. A. Universal solvent restructuring induced by colloidal nanoparticles. Science 347, 292–294 (2015).
Thomä, S. L. & Zobel, M. Ethanol–water motifs—a re-interpretation of the double-difference pair distribution functions of aqueous iron oxide nanoparticle dispersions. J. Chem. Phys. 158, 224704 (2023).
Soper, A. Joint structure refinement of X-ray and neutron diffraction data on disordered materials: application to liquid water. J. Phys. Cond. Matt. 19, 335206 (2007).
Soper, A. Empirical potential Monte Carlo simulation of fluid structure. Chem. Phys. 202, 295–306 (1996).
Bowron, D. et al. NIMROD: the near and intermediate range order diffractometer of the ISIS second target station. Rev. Sci. Instrum. 81, 033905 (2010).
Howard, C. A., Thompson, H., Wasse, J. C. & Skipper, N. T. Formation of giant solvation shells around fulleride anions in liquid ammonia. J. Am. Chem. Soc. 126, 13228–13229 (2004).
Basma, N. et al. The liquid structure of the solvents dimethylformamide (DMF) and dimethylacetamide (DMA). Mol. Phys. https://doi.org/10.1080/00268976.2019.1649494 (2019).
Pénicaud, A., Poulin, P., Derré, A., Anglaret, E. & Petit, P. Spontaneous dissolution of a single-wall carbon nanotube salt. J. Am. Chem. Soc. 127, 8–9 (2005).
Clancy, A. J., Melbourne, J. & Shaffer, M. S. P. A one-step route to solubilised, purified or functionalised single-walled carbon nanotubes. J. Mater. Chem. A 3, 16708–16715 (2015).
Jiang, C. et al. Increased solubility, liquid-crystalline phase, and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. ACS Nano 7, 4503–4510 (2013).
Soper, A. Partial structure factors from disordered materials diffraction data: an approach using empirical potential structure refinement. Phys. Rev. B 72, 104204 (2005).
Mandle, R. J. Implementation of a cylindrical distribution function for the analysis of anisotropic molecular dynamics simulations. PLoS ONE 17, e0279679 (2022).
Basma, N. S., Headen, T. F., Shaffer, M. S., Skipper, N. T. & Howard, C. A. Local structure and polar order in liquid N-methyl-2-pyrrolidone (NMP). J. Phys. Chem. B 122, 8963–8971 (2018).
Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).
Voiry, D., Drummond, C. & Pénicaud, A. Portrait of carbon nanotube salts as soluble polyelectrolytes. Soft Matt. 7, 7998–8001 (2011).
Yang, Z. et al. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141, 467–480 (2019).
Li, Y., Chen, N., Li, Z., Shao, H. & Qu, L. Frontiers of carbon materials as capacitive deionization electrodes. Dalton Trans. 49, 5006–5014 (2020).
Siddons, G. P., Merchin, D., Back, J. H., Jeong, J. K. & Shim, M. Highly efficient gating and doping of carbon nanotubes with polymer electrolytes. Nano Lett. 4, 927–931 (2004).
Fogden, S. A., Howard, C. A., Heenan, R. K., Skipper, N. T. & Shaffer, M. S. Scalable method for the reductive dissolution, purification, and separation of single-walled carbon nanotubes. ACS Nano 6, 54–62 (2011).
Skipper, N. et al. Local and long-range solute and solvent ordering in concentrated nanotube gels and solutions. ISIS Neutron and Muon Source Data Journal https://doi.org/10.5286/ISIS.E.RB1910503 (2022).
Clancy, A. J. et al. Real-time mechanistic study of carbon nanotube anion functionalisation through open circuit voltammetry. Chem. Sci. 10, 3300–3306 (2019).