Park, K. The beginning of the end of the nanomedicine hype. J. Control. Release 305, 221–222 (2019).
Bhatia, S. N., Chen, X., Dobrovolskaia, M. A. & Lammers, T. Cancer nanomedicine. Nat. Rev. Cancer 22, 550–556 (2022).
Youn, Y. S. & Bae, Y. H. Perspectives on the past, present, and future of cancer nanomedicine. Adv. Drug Deliv. Rev. 130, 3–11 (2018).
Leong, H. S. et al. On the issue of transparency and reproducibility in nanomedicine. Nat. Nanotechnol. 14, 629–635 (2019).
Lammers, T. et al. Cancer nanomedicine: is targeting our target? Nat. Rev. Mater. 1, 16069 (2016).
Barenholz, Y. Doxil®—the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117–134 (2012).
Shan, X. et al. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm. Sin. B 12, 3028–3048 (2022).
COVID-19 vaccination, world data. WHO https://data.who.int/dashboards/covid19/vaccines?n=c (2024).
Mathieu, E. et al. Coronavirus pandemic (COVID-19). OurWorldInData.org https://ourworldindata.org/coronavirus (2020).
Milane, L. & Amiji, M. Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: impact on translational nanomedicine. Drug Deliv. Transl. Res. 11, 1309–1315 (2021).
Bhattacharjee, S. & Brayden, D. J. Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients. Expert Opin. Drug Discov. 16, 235–254 (2021).
Swierczewska, M., Crist, R. M. & McNeil, S. E. in Characterization of Nanoparticles Intended for Drug Delivery (ed. McNeil, S. E.) 3–16 (Springer, 2018).
Metselaar, J. M. & Lammers, T. Challenges in nanomedicine clinical translation. Drug Deliv. Transl. Res. 10, 721–725 (2020).
Tang, H. et al. Cholesterol modulates the physiological response to nanoparticles by changing the composition of protein corona. Nat. Nanotechnol. 18, 1067–1077 (2023).
Hare, J. I. et al. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv. Drug Deliv. Rev. 108, 25–38 (2017).
Germain, M. et al. Delivering the power of nanomedicine to patients today. J. Control. Release 326, 164–171 (2020).
Zhu, G. H., Gray, A. B. C. & Patra, H. K. Nanomedicine: controlling nanoparticle clearance for translational success. Trends Pharmacol. Sci. 43, 709–711 (2022).
Kendall, M. & Lynch, I. Long-term monitoring for nanomedicine implants and drugs. Nat. Nanotechnol. 11, 206–210 (2016).
Crist, R. M. et al. Common pitfalls in nanotechnology: lessons learned from NCI’s Nanotechnology Characterization Laboratory. Integr. Biol. 5, 66–73 (2013).
Li, J. & Kataoka, K. Chemo-physical strategies to advance the in vivo functionality of targeted nanomedicine: the next generation. J. Am. Chem. Soc. 143, 538–559 (2020).
Beraldo-de-Araújo, V. L. et al. Excipient–excipient interactions in the development of nanocarriers: an innovative statistical approach for formulation decisions. Sci. Rep. 9, 10738 (2019).
Wang, N., Sun, H., Dong, J. & Ouyang, D. PharmDE: a new expert system for drug–excipient compatibility evaluation. Int. J. Pharm. 607, 120962 (2021).
Berrecoso, G., Crecente-Campo, J. & Alonso, M. J. Quantification of the actual composition of polymeric nanocapsules: a quality control analysis. Drug Deliv. Transl. Res. 12, 2865–2874 (2022).
Waterhouse, D. N., Tardi, P. G., Mayer, L. D. & Bally, M. B. A comparison of liposomal formulations of doxorubicin with drug administered in free form: changing toxicity profiles. Drug. Saf. 24, 903–920 (2001).
Harrington, K. J. et al. Phase I–II study of pegylated liposomal cisplatin (SPI-077) in patients with inoperable head and neck cancer. Ann. Oncol. 12, 493–496 (2001).
Troiano, G. et al. A quality by design approach to developing and manufacturing polymeric nanoparticle drug products. AAPS J. 18, 1354–1365 (2016).
Mast, M.-P. et al. Nanomedicine at the crossroads—a quick guide for IVIVC. Adv. Drug Deliv. Rev. 179, 113829 (2021).
Stillhart, C. et al. PBPK absorption modeling: establishing the in vitro–in vivo link—industry perspective. AAPS 21, 19 (2019).
Yuan, D. et al. Physiologically based pharmacokinetic modeling of nanoparticles. J. Pharm. Sci. 108, 58–72 (2019).
Jung, M. et al. Advances in 3D bioprinting for cancer biology and precision medicine: from matrix design to application. Adv. Healthc. Mater. 11, 2200690 (2022).
Cai, R. & Chen, C. The crown and the scepter: roles of the protein corona in nanomedicine. Adv. Mater. 31, 1805740 (2019).
Subramaniam, S. et al. Protein adsorption determines pulmonary cell uptake of lipid-based nanoparticles. J. Colloid Interface Sci. 641, 36–47 (2023).
Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).
Urbán, P., Liptrott, N. J. & Bremer, S. Overview of the blood compatibility of nanomedicines: a trend analysis of in vitro and in vivo studies. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11, e1546 (2019).
Jain, P. et al. In-vitro in-vivo correlation (IVIVC) in nanomedicine: iprotein corona the missing link? Biotechnol. Adv. 35, 889–904 (2017).
Agnihotri, T. G. et al. In vitro–in vivo correlation in nanocarriers: from protein corona to therapeutic implications. J. Control. Release 354, 794–809 (2023).
He, H. et al. Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures. Acc. Chem. Res. 52, 2445–2461 (2019).
Tong, F., Wang, Y. & Gao, H. Progress and challenges in the translation of cancer nanomedicines. Curr. Opin. Biotechnol. 85, 103045 (2024).
Zhang, P. et al. Cancer nanomedicine toward clinical translation: obstacles, opportunities, and future prospects. Med 4, 147–167 (2023).
Hoffman, R. M. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat. Rev. Cancer 15, 451–452 (2015).
Zushin, P. H., Mukherjee, S. & Wu, J. C. FDA Modernization Act 2.0: transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches. J. Clin. Invest. 133, e175824 (2023).
Ioannidis, J. P. A., Kim, B. Y. S. & Trounson, A. How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation. Nat. Biomed. Eng. 2, 797–809 (2018).
Goodman, S. N., Fanelli, D. & Ioannidis, J. P. A. What does research reproducibility mean? Sci. Transl. Med. 8, 341ps12 (2016).
Ke, W. et al. Trends and patterns in cancer nanotechnology research: asurvey of NCI’s caNanoLab and nanotechnology characterization laboratory. Adv. Drug Deliv. Rev. 191, 114591 (2022).
Paliwal, R., Babu, R. J. & Palakurthi, S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech 15, 1527–1534 (2014).
Liu, X., Huang, P., Yang, R. & Deng, H. mRNA cancer vaccines: construction and boosting strategies. ACS Nano 17, 19550–19580 (2023).
Pan, S. et al. The potential of mRNA vaccines in cancer nanomedicine and immunotherapy. Trends Immunol. 45, 20–31 (2024).
Shin, S. et al. Nanoparticle-based chimeric antigen receptor therapy for cancer immunotherapy. Tissue Eng. Regen. Med. 20, 371–387 (2023).
Mi, J., Ye, Q. & Min, Y. Advances in nanotechnology development to overcome current roadblocks in CAR-T therapy for solid tumors. Front. Immunol. 13, 849759 (2022).
Zuo, Y.-H., Zhao, X.-P. & Fan, X.-X. Nanotechnology-based chimeric antigen receptor T-cell therapy in treating solid tumor. Pharmacol. Res. 184, 106454 (2022).
Chen, Y. et al. Efficient non-viral CAR-T cell generation via silicon-nanotube-mediated transfection. Mater. Today 63, 8–17 (2023).
Hu, T., Kumar, A. R. K., Luo, Y. & Tay, A. Automating CAR-T transfection with micro and nano-technologies. Small Methods https://doi.org/10.1002/smtd.202301300 (2023).
López-Estévez, A. M., Lapuhs, P., Pineiro-Alonso, L. & Alonso, M. J. Personalized cancer nanomedicine: overcoming biological barriers for intracellular delivery of biopharmaceuticals. Adv. Mater. 36, 2309355 (2023).
Sun, Q., Radosz, M. & Shen, Y. Challenges in design of translational nanocarriers. J. Control. Release 164, 156–169 (2012).
DepoCyte—withdrawal of application for variation to marketing authorisation. EMA https://www.ema.europa.eu/en/medicines/human/variation/depocyte (2006).
Ramanathan, R. K. et al. Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in patients with advanced solid tumors: a pilot study. Clin. Cancer Res. 23, 3638–3648 (2017).
May, J.-N. et al. Histopathological biomarkers for predicting the tumour accumulation of nanomedicines. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01197-4 (2024).
Angeli, F. et al. Optimal use of the non-inferiority trial design. Pharm. Med. 34, 159–165 (2020).
Shitara, K. et al. Nab-paclitaxel versus solvent-based paclitaxel in patients with previously treated advanced gastric cancer (ABSOLUTE): an open-label, randomised, non-inferiority, phase 3 trial. Lancet Gastroenterol. Hepatol. 2, 277–287 (2017).
Fujiwara, Y. et al. A multi-national, randomised, open-label, parallel, phase III non-inferiority study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Br. J. Cancer 120, 475–480 (2019).
Kosaka, Y. et al. Multicenter randomized open-label phase II clinical study comparing outcomes of NK105 and paclitaxel in advanced or recurrent breast cancer. Int. J. Nanomed. 17, 4567 (2022).
Miedema, I. H. C. et al. First-in-human imaging of nanoparticle entrapped docetaxel (CPC634) in patients with advanced solid tumors using 89Zr-Df-CPC634 PET/CT. J. Clin. Oncol. 37, 3093 (2019).
Atrafi, F. et al. A phase I dose-finding and pharmacokinetics study of CPC634 (nanoparticle entrapped docetaxel) in patients with advanced solid tumors. J. Clin. Oncol. 37, 3026–3026 (2019).
Atrafi, F. et al. Intratumoral comparison of nanoparticle entrapped docetaxel (CPC634) with conventional docetaxel in patients with solid tumors. Clin. Cancer Res. 26, 3537–3545 (2020).
Ingrid, B. et al. CINOVA: a phase II study of CPC634 (nanoparticulate docetaxel) in patients with platinum resistant recurrent ovarian cancer. Int. J. Gynecol. Cancer 33, 1247 (2023).
Tinkle, S. et al. Nanomedicines: addressing the scientific and regulatory gap. Ann. N. Y. Acad. Sci. 1313, 35–56 (2014).
Foulkes, R. et al. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater. Sci. 8, 4653–4664 (2020).
Hemmrich, E. & McNeil, S. Active ingredient vs excipient debate for nanomedicines. Nat. Nanotechnol. 18, 692–695 (2023).
Hertig, J. B. et al. Tackling the challenges of nanomedicines: are we ready? Am. J. Health Syst. Pharm. 78, 1047–1056 (2021).
Fogel, D. B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: a review. Contemp. Clin. Trials Commun. 11, 156–164 (2018).
Center for Drug Evaluation and Research Drug Products, Including Biological Products, that Contain Nanomaterials (US Food & Drug Administration, 2022); https://www.fda.gov/media/157812/download
Van Norman, G. A. Drugs, devices, and the FDA: Part 1: an overview of approval processes for drugs. J. Am. Coll. Cardiol. 1, 170–179 (2016).
Klein, K. et al. A pragmatic regulatory approach for complex generics through the US FDA 505 (j) or 505 (b)(2) approval pathways. Ann. N. Y. Acad. Sci. 1502, 5–13 (2021).
Elnathan, R., Tay, A., Voelcker, N. H. & Chiappini, C. The start-ups taking nanoneedles into the clinic. Nat. Nanotechnol. 17, 807–811 (2022).
Park, A. et al. Rapid response through the entrepreneurial capabilities of academic scientists. Nat. Nanotechnol. 17, 802–807 (2022).
Thomas, V. J., Bliemel, M., Shippam, C. & Maine, E. Endowing university spin-offs pre-formation: entrepreneurial capabilities for scientist-entrepreneurs. Technovation 96-97, 102153 (2020).
Dayton, L. Coronavirus vaccine front-runner Moderna puts MIT chemist-entrepreneur Robert Langer in the spotlight. Nature Index https://www.nature.com/nature-index/news/coronavirus-vaccine-front-runner-moderna-puts-mit-chemist-entrepreneur-robert-langer-in-the-spotlight (2020).
Langer, R. A personal account of translating discoveries in an academic lab. Nat. Biotechnol. 31, 487–489 (2013).
Prokesch, S. The Edison of medicine. Harv. Bus. Rev. 95, 134–143 (2017).
Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).
Eaton, M. A. W., Levy, L. & Fontaine, O. M. A. Delivering nanomedicines to patients: a practical guide. Nanomedicine 11, 983–992 (2015).
Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).
Gold, E. R. What the COVID-19 pandemic revealed about intellectual property. Nat. Biotechnol. 40, 1428–1430 (2022).
Faria, M. et al. Minimum information reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).
Kilkenny, C. et al. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J. Pharmacol. Pharmacother. 1, 94–99 (2010).
Center for Drug Evaluation and Research & Center for Biologics Evaluation and Research Guidance for Industry: Environment Assessment of Human Drug and Biologics Applications (US Food & Drug Administration, 1998); https://www.fda.gov/media/70809/download
Center for Drug Evaluation and Research Guidance for Industry: Drug Products, Including Biological Products, that Contain Nanomaterials (US Food & Drug Administration, 2022); https://www.fda.gov/media/157812/download
Chetwynd, A. J., Wheeler, K. E. & Lynch, I. Best practice in reporting corona studies: Minimum information about Nanomaterial Biocorona Experiments (MINBE). Nano Today 28, 100758 (2019).
Hadjidemetriou, M. et al. In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles. ACS Nano 9, 8142–8156 (2015).
Ban, Z. et al. Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Proc. Natl Acad. Sci. USA 117, 10492–10499 (2020).
Hickman, R. J. et al. Self-driving laboratories: a paradigm shift in nanomedicine development. Matter 6, 1071–1081 (2023).
Arden, N. S. et al. Industry 4.0 for pharmaceutical manufacturing: preparing for the smart factories of the future. Int. J. Pharm. 602, 120554 (2021).
Young, H. et al. Toward the scalable, rapid, reproducible, and cost-effective synthesis of personalized nanomedicines at the point of care. Nano Lett. 24, 920–928 (2024).
de Vlieger, J. S. B. et al. Report of the AAPS guidance forum on the FDA draft guidance for industry: ‘drug products, including biological products, that contain nanomaterials’. AAPS J. 21, 56 (2019).
Marchant, G. E., Sylvester, D. J., Abbott, K. W. & Danforth, T. L. International harmonization of regulation of nanomedicine. Stud. Ethics Law Technol. https://doi.org/10.2202/1941-6008.1120 (2010).