Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004).
Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).
Catalan, G. et al. Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 10, 963–967 (2011).
Kim, J. et al. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 369, 81–84 (2020).
Peng, W. et al. Constructing polymorphic nanodomains in BaTiO3 films via epitaxial symmetry engineering. Adv. Funct. Mater. 30, 1910569 (2020).
Lee, D. et al. Emergence of room-temperature ferroelectricity at reduced dimensions. Science 349, 1314–1317 (2015).
Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2015).
Lee, C.-H. et al. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature 502, 532–536 (2013).
Keech, R. et al. Declamped piezoelectric coefficients in patterned 70/30 lead magnesium niobate–lead titanate thin films. Adv. Funct. Mater. 27, 1605014 (2017).
Kim, J. et al. Coupled polarization and nanodomain evolution underpins large electromechanical responses in relaxors. Nat. Phys. 18, 1502–1509 (2022).
Shetty, S. et al. Relaxor behavior in ordered lead magnesium niobate (PbMg1/3Nb2/3O3) thin films. Adv. Funct. Mater. 29, 1804258 (2019).
Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).
Eom, C. B. & Trolier-McKinstry, S. Thin-film piezoelectric MEMS. MRS Bull. 37, 1007–1017 (2012).
Baek, S. H. et al. Giant piezoelectricity on Si for hyperactive MEMS. Science 334, 958–961 (2011).
Pan, H. et al. Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578–582 (2019).
Pandya, S. et al. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat. Mater. 17, 432–438 (2018).
Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).
Lindemann, S. et al. Low-voltage magnetoelectric coupling in membrane heterostructures. Sci. Adv. 7, eabh2294 (2021).
Takenaka, H., Grinberg, I. & Rappe, A. M. Anisotropic local correlations and dynamics in a relaxor ferroelectric. Phys. Rev. Lett. 110, 147602 (2013).
Li, F. et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 7, 13807 (2016).
Takenaka, H., Grinberg, I., Liu, S. & Rappe, A. M. Slush-like polar structures in single-crystal relaxors. Nature 546, 391–395 (2017).
Xu, G., Wen, J., Stock, C. & Gehring, P. M. Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nat. Mater. 7, 562–566 (2008).
Toulouse, J. The three characteristic temperatures of relaxor dynamics and their meaning. Ferroelectrics 369, 203–213 (2008).
Kim, J. et al. Epitaxial strain control of relaxor ferroelectric phase evolution. Adv. Mater. 31, 1901060 (2019).
Kumar, A. et al. Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor ferroelectrics. Nat. Mater. 20, 62–67 (2021).
de Mathan, N. et al. A structural model for the relaxor PbMg1/3Nb2/3O3 at 5 K. J. Phys. Condens. Matter 3, 8159 (1991).
Jiménez, R. et al. Effect of grain size on the transition between ferroelectric and relaxor states in 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 ceramics. Phys. Rev. B 78, 094103 (2008).
Randall, C. A., Kim, N., Kucera, J., Cao, W. & Shrout, T. R. Intrinsic and extrinsic size effects in fine‐grained morphotropic‐phase‐boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998).
Shaw, T. M., Trolier-McKinstry, S. & McIntyre, P. C. The properties of ferroelectric films at small dimensions. Mater. Sci. 30, 263–298 (2000).
Blinc, R., Zalar, B., Zupančič, B., Morozovska, A. N. & Glinchuk, M. D. NMR study of size effects in relaxor PMN nanoparticles. Phys. Stat. Sol. 248, 2653–2655 (2011).
Grigalaitis, R. et al. Size effects in a relaxor: further insights into PMN. J. Phys. Condens. Matter 26, 272201 (2014).
Keech, R. et al. Lateral scaling of Pb(Mg1/3Nb2/3)O3-PbTiO3 thin films for piezoelectric logic applications. J. Appl. Phys. 115, 234106 (2014).
Riemer, L. M. et al. Dielectric and electro-mechanic nonlinearities in perovskite oxide ferroelectrics, relaxors, and relaxor ferroelectrics. J. Appl. Phys. 129, 054101 (2021).
Kay, H. F. & Dunn, J. W. Thickness dependence of the nucleation field of triglycine sulphate. Philos. Mag. A 7, 2027–2034 (1962).
Burns, G. & Dacol, F. H. Crystalline ferroelectrics with glassy polarization behavior. Phys. Rev. B 28, 2527–2530 (1983).
Dkhil, B. et al. Intermediate temperature scale T∗ in lead-based relaxor systems. Phys. Rev. B 80, 064103 (2009).
Viehland, D., Jang, S., Cross, E. L. & Wuttig, M. The dielectric relaxation of lead magnesium niobate relaxor ferroelectrics. Phil. Mag. Part B 64, 335–344 (1991).
Hehlen, B., Al-Sabbagh, M., Al-Zein, A. & Hlinka, J. Relaxor ferroelectrics: back to the single-soft-mode picture. Phys. Rev. Lett. 117, 155501 (2016).
Fernandez, A., Kim, J., Meyers, D., Saremi, S. & Martin, L. W. Finite-size effects in lead scandium tantalate relaxor thin films. Phys. Rev. B 101, 094102 (2020).
Wu, Z., Duan, W., Wu, J., Gu, B.-L. & Zhang, X.-W. Dielectric properties of relaxor ferroelectric films. J. Appl. Phys. 98, 094105 (2005).
Karthik, J., Damodaran, A. R. & Martin, L. W. Epitaxial ferroelectric heterostructures fabricated by selective area epitaxy of SrRuO3 using an MgO mask. Adv. Mater. 24, 1610–1615 (2012).
Jiang, Y. et al. Enabling ultra-low-voltage switching in BaTiO3. Nat. Mater. 21, 779–785 (2022).
Frederick, J. et al. Visualization of dielectric constant-electric field-temperature phase maps for imprinted relaxor ferroelectric thin films. Appl. Phys. Lett. 108, 132902 (2016).
Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).
Grinberg, I., Juhás, P., Davies, P. K. & Rappe, A. M. Relationship between Local structure and relaxor behavior in perovskite oxides. Phys. Rev. Lett. 99, 267603 (2007).
Carreaud, J. et al. Size-driven relaxation and polar states in PbMg1/3Nb2/3O3-based system. Phys. Rev. B 72, 174115 (2005).
Xu, G., Zhong, Z., Bing, Y., Ye, Z.-G. & Shirane, G. Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric. Nat. Mater. 5, 134–140 (2006).
Xie, A. et al. Supercritical relaxor nanograined ferroelectrics for ultrahigh‐energy‐storage capacitors. Adv. Mater. 34, 2204356 (2022).
Li, F. et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science 364, 264–268 (2019).
Pirc, R. & Blinc, R. Vogel–Fulcher freezing in relaxor ferroelectrics. Phys. Rev. B 76, 020101 (2007).
Sang, X. & LeBeau, J. M. Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge. Ultramicroscopy 138, 28–35 (2014).
LeBeau, J. M., Findlay, S. D., Allen, L. J. & Stemmer, S. Position averaged convergent beam electron diffraction: theory and applications. Ultramicroscopy 110, 118–125 (2010).
Sato, Y. et al. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Anal. 2, 143–168 (1998).
Qi, Y. & Rabe, K. M. Phase competition in HfO2 with applied electric field from first principles. Phys. Rev. B 102, 214108 (2020).
Wang, X. & Vanderbilt, D. First-principles perturbative computation of dielectric and Born charge tensors in finite electric fields. Phys. Rev. B 75, 115116 (2007).
Wang, X. & Vanderbilt, D. First-principles perturbative computation of phonon properties of insulators in finite electric fields. Phys. Rev. B 74, 054304 (2006).
Kim, J. Dataset of size-driven phase evolution in ultrathin relaxor films. Zenodo https://doi.org/10.5281/zenodo.14510532 (2024).