sábado, janeiro 18, 2025
HomeNanotechnologyAn orally administered glucose-responsive polymeric complex for high-efficiency and safe delivery of...

An orally administered glucose-responsive polymeric complex for high-efficiency and safe delivery of insulin in mice and pigs


  • Sun, H. et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Katsarou, A. et al. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers 3, 17016 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Mathieu, C., Martens, P. J. & Vangoitsenhoven, R. One hundred years of insulin therapy. Nat. Rev. Endocrinol. 17, 715–725 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geho, W. B. The importance of the liver in insulin replacement therapy in insulin-deficient diabetes. Diabetes 63, 1445–1447 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, T. D., Whitehead, K. A. & Mitragotri, S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater. 5, 127–148 (2020).

    Article 

    Google Scholar
     

  • Lee, J. S. et al. Metabolic and immunomodulatory control of type 1 diabetes via orally delivered bile-acid-polymer nanocarriers of insulin or rapamycin. Nat. Biomed. Eng. 5, 983–997 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veiseh, O., Tang, B. C., Whitehead, K. A., Anderson, D. G. & Langer, R. Managing diabetes with nanomedicine: challenges and opportunities. Nat. Rev. Drug Discov. 14, 45–57 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2016).

    Article 

    Google Scholar
     

  • Bakh, N. A. et al. Glucose-responsive insulin by molecular and physical design. Nat. Chem. 9, 937–944 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Glucose-responsive insulin and delivery systems: innovation and translation. Adv. Mater. 32, 1902004 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mo, R., Jiang, T., Di, J., Tai, W. & Gu, Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev. 43, 3595–3629 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z., Wang, J., Kahkoska, A. R., Buse, J. B. & Gu, Z. Developing insulin delivery devices with glucose responsiveness. Trends Pharmacol. Sci. 42, 31–44 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gu, Z. et al. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 7, 6758–6766 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat. Chem. Biol. 14, 86–93 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Podual, K., Doyle, F. J. & Peppas, N. A. Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts. J. Control. Release 67, 9–17 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitano, S., Koyama, Y., Kataoka, K., Okano, T. & Sakurai, Y. A novel drug delivery system utilizing a glucose responsive polymer complex between poly (vinyl alcohol) and poly (N-vinyl-2-pyrrolidone) with a phenylboronic acid moiety. J. Control. Release 19, 161–170 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Hisamitsu, I., Kataoka, K., Okano, T. & Sakurai, Y. Glucose-responsive gel from phenylborate polymer and poly (vinyl alcohol): prompt response at physiological pH through the interaction of borate with amino group in the gel. Pharm. Res. 14, 289–293 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsumoto, A. et al. A synthetic approach toward a self-regulated insulin delivery system. Angew. Chem. Int. Ed. 51, 2124–2128 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chou, D. H.-C. et al. Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc. Natl Acad. Sci. USA 112, 2401–2406 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Sci. Adv. 5, eaaw4357 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, J. et al. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng. 4, 499–506 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Injectable biodegradable polymeric complex for glucose-responsive insulin delivery. ACS Nano 15, 4294–4304 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsumoto, A. et al. Synthetic ‘smart gel’ provides glucose-responsive insulin delivery in diabetic mice. Sci. Adv. 3, eaaq0723 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Week-long normoglycaemia in diabetic mice and minipigs via a subcutaneous dose of a glucose-responsive insulin complex. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01138-7 (2023).

  • Brownlee, M. & Cerami, A. A glucose-controlled insulin-delivery system: semisynthetic insulin bound to lectin. Science 206, 1190–1191 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Glucose transporter inhibitor-conjugated insulin mitigates hypoglycemia. Proc. Natl Acad. Sci. USA 116, 10744–10748 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, Y., Ji, K., Wang, Y., Gu, Z. & Wang, J. Materials and carriers development for glucose-responsive insulin. Acc. Mater. Res. 3, 960–970 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chu, J. N. & Traverso, G. Foundations of gastrointestinal-based drug delivery and future developments. Nat. Rev. Gastroenterol. Hepatol. 19, 219–238 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, T. et al. Ligand-switchable nanoparticles resembling viral surface for sequential drug delivery and improved oral insulin therapy. Nat. Commun. 13, 6649 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xi, Z. et al. Dual-modified nanoparticles overcome sequential absorption barriers for oral insulin delivery. J. Control. Release 342, 1–13 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drucker, D. J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 19, 277–289 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Recent advances in oral and transdermal protein delivery systems. Angew. Chem. Int. Ed. 62, e202214795 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Baryakova, T. H., Pogostin, B. H., Langer, R. & McHugh, K. J. Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems. Nat. Rev. Drug Discov. 22, 387–409 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamson, N. G., Berger, A., Fein, K. C. & Whitehead, K. A. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat. Biomed. Eng. 4, 84–96 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lagarrigue, P., Moncalvo, F. & Cellesi, F. Non-spherical polymeric nanocarriers for therapeutics: the effect of shape on biological systems and drug delivery properties. Pharmaceutics 15, 32 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ji, K. et al. Material design for oral insulin delivery. Med X 1, 7 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, J. et al. Glucose-responsive oral insulin delivery for postprandial glycemic regulation. Nano Res. 12, 1539–1545 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, A. et al. Liver-target and glucose-responsive polymersomes toward mimicking endogenous insulin secretion with improved hepatic glucose utilization. Adv. Funct. Mater. 30, 1910168 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, Y. et al. Glucose-responsive oral insulin delivery platform for one treatment a day in diabetes. Matter 4, 3269–3285 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Han, X. et al. Zwitterionic micelles efficiently deliver oral insulin without opening tight junctions. Nat. Nanotechnol. 15, 605–614 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Y. et al. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat. Biomed. Eng. 2, 318–325 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banerjee, A., Qi, J., Gogoi, R., Wong, J. & Mitragotri, S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release 238, 176–185 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, W. et al. Highly sensitive colorimetric detection of a variety of analytes via the Tyndall effect. Anal. Chem. 91, 15114–15122 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cone, R. A. Barrier properties of mucus. Adv. Drug Deliv. Rev. 61, 75–85 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pridgen, E. M. et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal Fc receptor for oral delivery. Sci. Transl. Med. 5, 213ra167 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acosta-Rodríguez, V. et al. Circadian alignment of early onset caloric restriction promotes longevity in male c57BL/6J mice. Science 376, 1192–1202 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, R. et al. A glucose-responsive insulin therapy protects animals against hypoglycemia. JCI Insight 3, e97476 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, Y. et al. Long-lasting designer insulin with glucose-dependent solubility markedly reduces risk of hypoglycemia. Adv. Ther. (Weinh.) 2, 1900128 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ayala, J. E. et al. Hyperinsulinemic–euglycemic clamps in conscious, unrestrained mice. J. Vis. Exp. 16, e3188 (2011).


    Google Scholar
     

  • Cao, Z., Zhang, L. & Jiang, S. Superhydrophilic zwitterionic polymers stabilize liposomes. Langmuir 28, 11625–11632 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, W. et al. Mucus penetrating and cell-binding polyzwitterionic micelles as potent oral nanomedicine for cancer drug delivery. Adv. Mater. 34, 2109189 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zou, J.-J. et al. Efficient oral insulin delivery enabled by transferrin-coated acid-resistant metal–organic framework nanoparticles. Sci. Adv. 8, eabm4677 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES
    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments