quinta-feira, novembro 28, 2024
HomeNanotechnologyAtomically intimate assembly of dual metal–oxide interfaces for tandem conversion of syngas...

Atomically intimate assembly of dual metal–oxide interfaces for tandem conversion of syngas to ethanol


  • Herman, R. G. Advances in catalytic synthesis and utilization of higher alcohols. Catal. Today 55, 233–245 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Luk, H. T., Mondelli, C., Ferré, D. C., Stewart, J. A. & Pérez-Ramírez, J. Status and prospects in higher alcohols synthesis from syngas. Chem. Soc. Rev. 46, 1358–1426 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ao, M., Pham, G. H., Sunarso, J., Tade, M. O. & Liu, S. Active centers of catalysts for higher alcohol synthesis from syngas: a review. ACS Catal. 8, 7025–7050 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, G., Yang, G., Peng, X., Wu, J. & Tsubaki, N. Recent advances in the routes and catalysts for ethanol synthesis from syngas. Chem. Soc. Rev. 51, 5606–5659 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, J. et al. Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis. Nat. Commun. 11, 827 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spivey, J. J. & Egbebi, A. Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chem. Soc. Rev. 36, 1514–1528 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, Z. et al. CoFe alloy carbide catalysts for higher alcohols synthesis from syngas: evolution of active sites and Na promoting effect. J. Catal. 405, 430–444 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pei, Y.-P. et al. High alcohols synthesis via Fischer–Tropsch reaction at cobalt metal/carbide interface. ACS Catal. 5, 3620–3624 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Xiang, Y. & Kruse, N. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins. Nat. Commun. 7, 13058 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez, L. et al. Syngas conversion to ethanol over a mesoporous Cu/MCM-41 catalyst: effect of K and Fe promoters. Appl. Catal. A 526, 77–83 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gupta, M., Smith, M. L. & Spivey, J. J. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts. ACS Catal. 1, 641–656 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Sun, J., Wan, S., Wang, F., Lin, J. & Wang, Y. Selective synthesis of methanol and higher alcohols over Cs/Cu/ZnO/Al2O3 catalysts. Ind. Eng. Chem. Res. 54, 7841–7851 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, N. et al. Enhanced catalytic performance and promotional effect of molybdenum sulfide cluster-derived catalysts for higher alcohols synthesis from syngas. Catal. Today 316, 177–184 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Morrill, M. R. et al. Origins of unusual alcohol selectivities over mixed MgAl oxide-supported K/MoS2 catalysts for higher alcohol synthesis from syngas. ACS Catal. 3, 1665–1675 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Qu, H., He, S., Su, Y., Zhang, Y. & Su, H. MoSe2: a promising non-noble metal catalyst for direct ethanol synthesis from syngas. Fuel 281, 118760 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hu, J. et al. Edge-rich molybdenum disulfide tailors carbon-chain growth for selective hydrogenation of carbon monoxide to higher alcohols. Nat. Commun. 14, 6808 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, N. et al. Intrinsic selectivity and structure sensitivity of rhodium catalysts for C2+ oxygenate production. J. Am. Chem. Soc. 138, 3705–3714 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Preikschas, P. et al. Tuning the Rh–FeOx interface in ethanol synthesis through formation phase studies at high pressures of synthesis gas. ACS Catal. 11, 4047–4060 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Huang, X. et al. Atomic-scale observation of the metal–promoter interaction in Rh-based syngas-upgrading catalysts. Angew. Chem. Int. Ed. 58, 8596 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, N. et al. Rh-MnO interface sites formed by atomic layer deposition promote syngas conversion to higher oxygenates. ACS Catal. 7, 5746–5757 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schwartz, V., Campos, A., Egbebi, A., Spivey, J. J. & Overbury, S. H. EXAFS and FT-IR characterization of Mn and Li promoted titania-supported Rh catalysts for CO hydrogenation. ACS Catal. 1, 1298–1306 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Correlating the degree of metal-promoter interaction to ethanol selectivity over MnRh/CNTs CO hydrogenation catalysts. J. Catal. 313, 149–158 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J., Zhang, Q. & Wang, Y. Rh-catalyzed syngas conversion to ethanol: studies on the promoting effect of FeOx. Catal. Today 171, 257–265 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Han, L., Mao, D., Yu, J., Guo, Q. & Lu, G. C2-oxygenates synthesis through CO hydrogenation on SiO2-ZrO2 supported Rh-based catalyst: the effect of support. Appl. Catal. A 454, 81–87 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Yu, J. et al. Comparative study on ethanol-based oxygenate synthesis via syngas over Rh–Mn bimetallic catalysts supported on different UiO MOFs. Energy Fuels 36, 11940–11949 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Carrillo, P., Shi, R., Teeluck, K., Senanayake, S. D. & White, M. G. In situ formation of FeRh nanoalloys for oxygenate synthesis. ACS Catal. 8, 7279–7286 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pan, X. et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 6, 507–511 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Direct conversion of syngas to ethanol within zeolite crystals. Chem 6, 646–657 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xu, D., Zhang, H., Ma, H., Qian, W. & Ying, W. Effect of Ce promoter on Rh-Fe/TiO2 catalysts for ethanol synthesis from syngas. Catal. Commun. 98, 90–93 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lin, T. et al. Direct production of higher oxygenates by syngas conversion over a multifunctional catalyst. Angew. Chem. Int. Ed. 58, 4627–4631 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Luan, X. et al. Selective conversion of syngas into higher alcohols via a reaction-coupling strategy on multifunctional relay catalysts. ACS Catal. 10, 2419–2430 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ham, H. et al. Selective ethanol synthesis via multi-step reactions from syngas: ferrierite-based catalysts and fluidized-bed reactor application. Catal. Today 303, 93–99 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y., Luo, H., Liang, D. & Bao, X. Different mechanisms for the formation of acetaldehyde and ethanol on the Rh-based catalysts. J. Catal. 196, 46–55 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Li, K. & Chen, J. G. CO2 hydrogenation to methanol over ZrO2-containing catalysts: insights into ZrO2 induced synergy. ACS Catal. 9, 7840–7861 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, S. et al. Tuning the CO2 hydrogenation selectivity of rhodium single-atom catalysts on zirconium dioxide with alkali ions. Angew. Chem. Int. Ed. 62, e202218167 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shi, L. et al. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation. Angew. Chem. Int. Ed. 54, 13994–13998 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat. Commun. 12, 2664 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nellist, P. D. & Pennycook, S. J. In Advances in Imaging and Electron Physics Vol. 113 (ed. Hawkes, P. W.) 147–203 (Elsevier, 2000).

  • van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Article 

    Google Scholar
     

  • Zhou, L. et al. Stabilizing non-iridium active sites by non-stoichiometric oxide for acidic water oxidation at high current density. Nat. Commun. 14, 7644 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, L. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yanguas-Gil, A., Libera, J. A. & Elam, J. W. Modulation of the growth per cycle in atomic layer deposition using reversible surface functionalization. Chem. Mater. 25, 4849–4860 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Schumann, M., Grunwaldt, J.-D., Jensen, A. D. & Christensen, J. M. Investigations of mechanism, surface species and support effects in CO hydrogenation over Rh. J. Catal. 414, 90–100 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Preikschas, P. et al. Tuning the Rh-FeOx interface in ethanol synthesis through formation phase studies at high pressures of synthesis gas. ACS Catal. 11, 4047–4060 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fukuoka, A. et al. Bimetallic promotion of alcohol production in CO hydrogenation and olefin hydroformylation on RhFe, PtFe, PdFe, and IrFe cluster-derived catalysts. J. Catal. 126, 434–450 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Boffa, A., Lin, C., Bell, A. T. & Somorjai, G. A. Promotion of CO and CO2 hydrogenation over Rh by metal oxides: the influence of oxide Lewis acidity and reducibility. J. Catal. 149, 149–158 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Carrillo, P., Shi, R., Senanayake, S. D. & White, M. G. In situ structural study of manganese and iron oxide promoted rhodium catalysts for oxygenate synthesis. Appl. Catal. A 608, 117845 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Subramani, V. & Gangwal, S. K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energy Fuels 22, 814–839 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kwon, Y., Kim, T. Y., Kwon, G., Yi, J. & Lee, H. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. J. Am. Chem. Soc. 139, 17694–17699 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gogate, M. R. & Davis, R. J. X-ray absorption spectroscopy of an Fe-promoted Rh/TiO2 catalyst for synthesis of ethanol from synthesis gas. ChemCatChem 1, 295–303 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Ichikawa, M., Fukushima, T., Yokoyama, T., Kosugi, N. & Kuroda, H. EXAFS evidence for direct rhodium-iron bonding in silica-supported rhodium-iron bimetallic catalysts. J. Phys. Chem. 90, 1222–1224 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Palomino, R. M., Magee, J. W., Llorca, J., Senanayake, S. D. & White, M. G. The effect of Fe-Rh alloying on CO hydrogenation to C2+ oxygenates. J. Catal. 329, 87–94 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci. Adv. 3, e1701290 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piskorz, W. et al. Periodic DFT study of the tetragonal ZrO2 nanocrystals: equilibrium morphology modeling and atomistic surface hydration thermodynamics. J. Phys. Chem. C 116, 19307–19320 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C. et al. Strong electronic oxide-support interaction over In2O3/ZrO2 for highly selective CO2 hydrogenation to methanol. J. Am. Chem. Soc. 142, 19523–19531 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J.-X., Su, Y., Filot, I. A. W. & Hensen, E. J. M. A linear scaling relation for CO oxidation on CeO2-supported Pd. J. Am. Chem. Soc. 140, 4580–4587 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deaven, D. M. & Ho, K. M. Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 75, 288–291 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, Y. & Liu, P. Mechanism of ethanol synthesis from syngas on Rh(111). J. Am. Chem. Soc. 131, 13054–13061 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, J., Mo, X. & Goodwin, J. G. La, V, and Fe promotion of Rh/SiO2 for CO hydrogenation: detailed analysis of kinetics and mechanism. J. Catal. 268, 142–149 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Igawa, N. & Ishii, Y. Crystal structure of metastable tetragonal zirconia up to 1473 K. J. Am. Ceram. Soc. 84, 1169–1171 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Kittel, C., McEuen, P. & McEuen, P. Introduction to Solid State Physics Vol. 8 (Wiley, 1996).

  • Sun, K., Zhao, Y., Su, H.-Y. & Li, W.-X. Force reversed method for locating transition states. Theor. Chem. Acc. 131, 1–10 (2012).

    Article 

    Google Scholar
     

  • Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Henkelman, G. & Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments