Herman, R. G. Advances in catalytic synthesis and utilization of higher alcohols. Catal. Today 55, 233–245 (2000).
Luk, H. T., Mondelli, C., Ferré, D. C., Stewart, J. A. & Pérez-Ramírez, J. Status and prospects in higher alcohols synthesis from syngas. Chem. Soc. Rev. 46, 1358–1426 (2017).
Ao, M., Pham, G. H., Sunarso, J., Tade, M. O. & Liu, S. Active centers of catalysts for higher alcohol synthesis from syngas: a review. ACS Catal. 8, 7025–7050 (2018).
Liu, G., Yang, G., Peng, X., Wu, J. & Tsubaki, N. Recent advances in the routes and catalysts for ethanol synthesis from syngas. Chem. Soc. Rev. 51, 5606–5659 (2022).
Kang, J. et al. Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis. Nat. Commun. 11, 827 (2020).
Spivey, J. J. & Egbebi, A. Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chem. Soc. Rev. 36, 1514–1528 (2007).
Zeng, Z. et al. CoFe alloy carbide catalysts for higher alcohols synthesis from syngas: evolution of active sites and Na promoting effect. J. Catal. 405, 430–444 (2022).
Pei, Y.-P. et al. High alcohols synthesis via Fischer–Tropsch reaction at cobalt metal/carbide interface. ACS Catal. 5, 3620–3624 (2015).
Xiang, Y. & Kruse, N. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins. Nat. Commun. 7, 13058 (2016).
Lopez, L. et al. Syngas conversion to ethanol over a mesoporous Cu/MCM-41 catalyst: effect of K and Fe promoters. Appl. Catal. A 526, 77–83 (2016).
Gupta, M., Smith, M. L. & Spivey, J. J. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts. ACS Catal. 1, 641–656 (2011).
Sun, J., Wan, S., Wang, F., Lin, J. & Wang, Y. Selective synthesis of methanol and higher alcohols over Cs/Cu/ZnO/Al2O3 catalysts. Ind. Eng. Chem. Res. 54, 7841–7851 (2015).
Wang, N. et al. Enhanced catalytic performance and promotional effect of molybdenum sulfide cluster-derived catalysts for higher alcohols synthesis from syngas. Catal. Today 316, 177–184 (2018).
Morrill, M. R. et al. Origins of unusual alcohol selectivities over mixed MgAl oxide-supported K/MoS2 catalysts for higher alcohol synthesis from syngas. ACS Catal. 3, 1665–1675 (2013).
Qu, H., He, S., Su, Y., Zhang, Y. & Su, H. MoSe2: a promising non-noble metal catalyst for direct ethanol synthesis from syngas. Fuel 281, 118760 (2020).
Hu, J. et al. Edge-rich molybdenum disulfide tailors carbon-chain growth for selective hydrogenation of carbon monoxide to higher alcohols. Nat. Commun. 14, 6808 (2023).
Yang, N. et al. Intrinsic selectivity and structure sensitivity of rhodium catalysts for C2+ oxygenate production. J. Am. Chem. Soc. 138, 3705–3714 (2016).
Preikschas, P. et al. Tuning the Rh–FeOx interface in ethanol synthesis through formation phase studies at high pressures of synthesis gas. ACS Catal. 11, 4047–4060 (2021).
Huang, X. et al. Atomic-scale observation of the metal–promoter interaction in Rh-based syngas-upgrading catalysts. Angew. Chem. Int. Ed. 58, 8596 (2019).
Yang, N. et al. Rh-MnO interface sites formed by atomic layer deposition promote syngas conversion to higher oxygenates. ACS Catal. 7, 5746–5757 (2017).
Schwartz, V., Campos, A., Egbebi, A., Spivey, J. J. & Overbury, S. H. EXAFS and FT-IR characterization of Mn and Li promoted titania-supported Rh catalysts for CO hydrogenation. ACS Catal. 1, 1298–1306 (2011).
Liu, J. et al. Correlating the degree of metal-promoter interaction to ethanol selectivity over MnRh/CNTs CO hydrogenation catalysts. J. Catal. 313, 149–158 (2014).
Wang, J., Zhang, Q. & Wang, Y. Rh-catalyzed syngas conversion to ethanol: studies on the promoting effect of FeOx. Catal. Today 171, 257–265 (2011).
Han, L., Mao, D., Yu, J., Guo, Q. & Lu, G. C2-oxygenates synthesis through CO hydrogenation on SiO2-ZrO2 supported Rh-based catalyst: the effect of support. Appl. Catal. A 454, 81–87 (2013).
Yu, J. et al. Comparative study on ethanol-based oxygenate synthesis via syngas over Rh–Mn bimetallic catalysts supported on different UiO MOFs. Energy Fuels 36, 11940–11949 (2022).
Carrillo, P., Shi, R., Teeluck, K., Senanayake, S. D. & White, M. G. In situ formation of FeRh nanoalloys for oxygenate synthesis. ACS Catal. 8, 7279–7286 (2018).
Pan, X. et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 6, 507–511 (2007).
Wang, C. et al. Direct conversion of syngas to ethanol within zeolite crystals. Chem 6, 646–657 (2020).
Xu, D., Zhang, H., Ma, H., Qian, W. & Ying, W. Effect of Ce promoter on Rh-Fe/TiO2 catalysts for ethanol synthesis from syngas. Catal. Commun. 98, 90–93 (2017).
Lin, T. et al. Direct production of higher oxygenates by syngas conversion over a multifunctional catalyst. Angew. Chem. Int. Ed. 58, 4627–4631 (2019).
Luan, X. et al. Selective conversion of syngas into higher alcohols via a reaction-coupling strategy on multifunctional relay catalysts. ACS Catal. 10, 2419–2430 (2020).
Ham, H. et al. Selective ethanol synthesis via multi-step reactions from syngas: ferrierite-based catalysts and fluidized-bed reactor application. Catal. Today 303, 93–99 (2018).
Wang, Y., Luo, H., Liang, D. & Bao, X. Different mechanisms for the formation of acetaldehyde and ethanol on the Rh-based catalysts. J. Catal. 196, 46–55 (2000).
Li, K. & Chen, J. G. CO2 hydrogenation to methanol over ZrO2-containing catalysts: insights into ZrO2 induced synergy. ACS Catal. 9, 7840–7861 (2019).
Li, S. et al. Tuning the CO2 hydrogenation selectivity of rhodium single-atom catalysts on zirconium dioxide with alkali ions. Angew. Chem. Int. Ed. 62, e202218167 (2023).
Shi, L. et al. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation. Angew. Chem. Int. Ed. 54, 13994–13998 (2015).
Chen, X. et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat. Commun. 12, 2664 (2021).
Nellist, P. D. & Pennycook, S. J. In Advances in Imaging and Electron Physics Vol. 113 (ed. Hawkes, P. W.) 147–203 (Elsevier, 2000).
van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).
Zhou, L. et al. Stabilizing non-iridium active sites by non-stoichiometric oxide for acidic water oxidation at high current density. Nat. Commun. 14, 7644 (2023).
Cao, L. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019).
Yanguas-Gil, A., Libera, J. A. & Elam, J. W. Modulation of the growth per cycle in atomic layer deposition using reversible surface functionalization. Chem. Mater. 25, 4849–4860 (2013).
Schumann, M., Grunwaldt, J.-D., Jensen, A. D. & Christensen, J. M. Investigations of mechanism, surface species and support effects in CO hydrogenation over Rh. J. Catal. 414, 90–100 (2022).
Preikschas, P. et al. Tuning the Rh-FeOx interface in ethanol synthesis through formation phase studies at high pressures of synthesis gas. ACS Catal. 11, 4047–4060 (2021).
Fukuoka, A. et al. Bimetallic promotion of alcohol production in CO hydrogenation and olefin hydroformylation on RhFe, PtFe, PdFe, and IrFe cluster-derived catalysts. J. Catal. 126, 434–450 (1990).
Boffa, A., Lin, C., Bell, A. T. & Somorjai, G. A. Promotion of CO and CO2 hydrogenation over Rh by metal oxides: the influence of oxide Lewis acidity and reducibility. J. Catal. 149, 149–158 (1994).
Carrillo, P., Shi, R., Senanayake, S. D. & White, M. G. In situ structural study of manganese and iron oxide promoted rhodium catalysts for oxygenate synthesis. Appl. Catal. A 608, 117845 (2020).
Subramani, V. & Gangwal, S. K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energy Fuels 22, 814–839 (2008).
Kwon, Y., Kim, T. Y., Kwon, G., Yi, J. & Lee, H. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. J. Am. Chem. Soc. 139, 17694–17699 (2017).
Gogate, M. R. & Davis, R. J. X-ray absorption spectroscopy of an Fe-promoted Rh/TiO2 catalyst for synthesis of ethanol from synthesis gas. ChemCatChem 1, 295–303 (2009).
Ichikawa, M., Fukushima, T., Yokoyama, T., Kosugi, N. & Kuroda, H. EXAFS evidence for direct rhodium-iron bonding in silica-supported rhodium-iron bimetallic catalysts. J. Phys. Chem. 90, 1222–1224 (1986).
Palomino, R. M., Magee, J. W., Llorca, J., Senanayake, S. D. & White, M. G. The effect of Fe-Rh alloying on CO hydrogenation to C2+ oxygenates. J. Catal. 329, 87–94 (2015).
Wang, J. et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci. Adv. 3, e1701290 (2017).
Piskorz, W. et al. Periodic DFT study of the tetragonal ZrO2 nanocrystals: equilibrium morphology modeling and atomistic surface hydration thermodynamics. J. Phys. Chem. C 116, 19307–19320 (2012).
Yang, C. et al. Strong electronic oxide-support interaction over In2O3/ZrO2 for highly selective CO2 hydrogenation to methanol. J. Am. Chem. Soc. 142, 19523–19531 (2020).
Liu, J.-X., Su, Y., Filot, I. A. W. & Hensen, E. J. M. A linear scaling relation for CO oxidation on CeO2-supported Pd. J. Am. Chem. Soc. 140, 4580–4587 (2018).
Deaven, D. M. & Ho, K. M. Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 75, 288–291 (1995).
Choi, Y. & Liu, P. Mechanism of ethanol synthesis from syngas on Rh(111). J. Am. Chem. Soc. 131, 13054–13061 (2009).
Gao, J., Mo, X. & Goodwin, J. G. La, V, and Fe promotion of Rh/SiO2 for CO hydrogenation: detailed analysis of kinetics and mechanism. J. Catal. 268, 142–149 (2009).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Igawa, N. & Ishii, Y. Crystal structure of metastable tetragonal zirconia up to 1473 K. J. Am. Ceram. Soc. 84, 1169–1171 (2001).
Kittel, C., McEuen, P. & McEuen, P. Introduction to Solid State Physics Vol. 8 (Wiley, 1996).
Sun, K., Zhao, Y., Su, H.-Y. & Li, W.-X. Force reversed method for locating transition states. Theor. Chem. Acc. 131, 1–10 (2012).
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).
Henkelman, G. & Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999).