Vougioukalakis, G. C. & Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 110, 1746–1787 (2010).
Trnka, T. M. & Grubbs, R. H. The development of L2X2RuCHR olefin metathesis catalysts: an organometallic success story. Acc. Chem. Res. 34, 18–29 (2001).
Montgomery, T. P., Ahmed, T. S. & Grubbs, R. H. Stereoretentive olefin metathesis: an avenue to kinetic selectivity. Angew. Chem. Int. Ed. 56, 11024–11036 (2017).
Fürstner, A. Olefin metathesis and beyond. Angew. Chem. Int. Ed. 39, 3012–3043 (2000).
Grubbs, R. H. & Chang, S. Recent advances in olefin metathesis and its application in organic synthesis. Tetrahedron 54, 4413–4450 (1998).
Nicolaou, K. C., Bulger, P. G. & Sarlah, D. Metathesis reactions in total synthesis. Angew. Chem. Int. Ed. 44, 4490–4527 (2005).
Ogba, O. M., Warner, N. C., O’Leary, D. J. & Grubbs, R. H. Recent advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 47, 4510–4544 (2018).
Becker, M. R., Watson, R. B. & Schindler, C. S. Beyond olefins: new metathesis directions for synthesis. Chem. Soc. Rev. 47, 7867–7881 (2018).
Hilf, S. & Kilbinger, A. F. M. Functional end groups for polymers prepared using ring-opening metathesis polymerization. Nat. Chem. 1, 537–546 (2009).
Mutlu, H., de Espinosa, L. M. & Meier, M. A. R. Acyclic diene metathesis: a versatile tool for the construction of defined polymer architectures. Chem. Soc. Rev. 40, 1404–1445 (2011).
Sinclair, F., Alkattan, M., Prunet, J. & Shaver, M. P. Olefin cross metathesis and ring-closing metathesis in polymer chemistry. Polym. Chem. 8, 3385–3398 (2017).
Ritter, T., Hejl, A., Wenzel, A. G., Funk, T. W. & Grubbs, R. H. A standard system of characterization for olefin metathesis catalysts. Organometallics 25, 5740–5745 (2006).
Lee, J. B., Ott, K. C. & Grubbs, R. H. Kinetics and stereochemistry of the titanacyclobutane–titanaethylene interconversion. Investigation of a degenerate olefin metathesis reaction. J. Am. Chem. Soc. 104, 7491–7496 (1982).
Tanaka, K., Tanaka, K., Takeo, H. & Matsumura, C. Intermediates for the degenerate and productive metathesis of propene elucidated by the metathesis reaction of (Z)-propene-1–d1. J. Am. Chem. Soc. 109, 2422–2425 (1987).
Stewart, I. C., Keitz, B. K., Kuhn, K. M., Thomas, R. M. & Grubbs, R. H. Nonproductive events in ring-closing metathesis using ruthenium catalysts. J. Am. Chem. Soc. 132, 8534–8535 (2010).
Easter, Q. T. & Blum, S. A. Single turnover at molecular polymerization catalysts reveals spatiotemporally resolved reactions. Angew. Chem. Int. Ed. 56, 13772–13775 (2017).
Easter, Q. T. & Blum, S. A. Evidence for dynamic chemical kinetics at individual molecular ruthenium catalysts. Angew. Chem. Int. Ed. 57, 1572–1575 (2018).
Easter, Q. T., Garcia, A. I. V. & Blum, S. A. Single-polymer–particle growth kinetics with molecular catalyst speciation and single-turnover imaging. ACS Catal. 9, 3375–3383 (2019).
Liu, C. et al. Single polymer growth dynamics. Science 358, 352–355 (2017).
Ibrahem, I., Yu, M., Schrock, R. R. & Hoveyda, A. H. Highly Z– and enantioselective ring-opening/cross-metathesis reactions catalyzed by stereogenic-at-Mo adamantylimido complexes. J. Am. Chem. Soc. 131, 3844–3845 (2009).
Flook, M. M., Jiang, A. J., Schrock, R. R., Müller, P. & Hoveyda, A. H. Z-selective olefin metathesis processes catalyzed by a molybdenum hexaisopropylterphenoxide monopyrrolide complex. J. Am. Chem. Soc. 131, 7962–7963 (2009).
Jiang, A. J., Zhao, Y., Schrock, R. R. & Hoveyda, A. H. Highly Z-selective metathesis homocoupling of terminal olefins. J. Am. Chem. Soc. 131, 16630–16631 (2009).
Koh, M. J., Nguyen, T. T., Zhang, H., Schrock, R. R. & Hoveyda, A. H. Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis. Nature 531, 459–465 (2016).
Koh, M. J. et al. Molybdenum chloride catalysts for Z-selective olefin metathesis reactions. Nature 542, 80–85 (2017).
Torker, S., Müller, A. & Chen, P. Building stereoselectivity into a chemoselective ring-opening metathesis polymerization catalyst for alternating copolymerization. Angew. Chem. Int. Ed. 49, 3762–3766 (2010).
Endo, K. & Grubbs, R. H. Chelated ruthenium catalysts for Z-selective olefin metathesis. J. Am. Chem. Soc. 133, 8525–8527 (2011).
Keitz, B. K., Endo, K., Herbert, M. B. & Grubbs, R. H. Z-selective homodimerization of terminal olefins with a ruthenium metathesis catalyst. J. Am. Chem. Soc. 133, 9686–9688 (2011).
Khan, R. K. M., Torker, S. & Hoveyda, A. H. Readily accessible and easily modifiable Ru-based catalysts for efficient and Z-selective ring-opening metathesis polymerization and ring-opening/cross-metathesis. J. Am. Chem. Soc. 135, 10258–10261 (2013).
Khan, R. K. M., Torker, S. & Hoveyda, A. H. Reactivity and selectivity differences between catecholate and catechothiolate Ru complexes. Implications regarding design of stereoselective olefin metathesis catalysts. J. Am. Chem. Soc. 136, 14337–14340 (2014).
Yang, C. et al. Unveiling the full reaction path of the Suzuki–Miyaura cross-coupling in a single-molecule junction. Nat. Nanotechnol. 16, 1214–1223 (2021).
Zhang, A. et al. Catalytic cycle of formate dehydrogenase captured by single-molecule conductance. Nat. Catal. 6, 266–275 (2023).
Yang, C. et al. Single-molecule electrical spectroscopy of organocatalysis. Matter 4, 2874–2885 (2021).
Yang, C. et al. Real-time monitoring of reaction stereochemistry through single-molecule observations of chirality-induced spin selectivity. Nat. Chem. 15, 972–979 (2023).
Zhang, L. et al. Electrochemical and electrostatic cleavage of alkoxyamines. J. Am. Chem. Soc. 140, 766–774 (2018).
Yang, C. et al. Electric field-catalyzed single-molecule Diels–Alder reaction dynamics. Sci. Adv. 7, eabf0689 (2021).
Guan, J. et al. Direct single-molecule dynamic detection of chemical reactions. Sci. Adv. 4, eaar2177 (2018).
Guo, Y., Yang, C., Zhang, L. & Guo, X. Tunable interferometric effects between single-molecule Suzuki–Miyaura cross-couplings. J. Am. Chem. Soc. 145, 6577–6584 (2023).
Guo, Y., Yang, C., Zhou, S., Liu, Z. & Guo, X. A single-molecule memristor based on an electric-field-driven dynamical structure reconfiguration. Adv. Mater. 34, 2204827 (2022).
Chen, H. et al. Reactions in single-molecule junctions. Nat. Rev. Mater. 8, 165–185 (2023).
Dief, E. M., Low, P. J., Díez-Pérez, I. & Darwish, N. Advances in single-molecule junctions as tools for chemical and biochemical analysis. Nat. Chem. 15, 600–614 (2023).
Yang, C., Yang, C., Guo, Y., Feng, J. & Guo, X. Graphene–molecule–graphene single-molecule junctions to detect electronic reactions at the molecular scale. Nat. Protoc. 18, 1958–1978 (2023).
Deiters, A. & Martin, S. F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev. 104, 2199–2238 (2004).
Anderson, P. W. More is different. Science 177, 393–396 (1972).
Strogatz, S. et al. Fifty years of ‘More is different’. Nat. Rev. Phys. 4, 508–510 (2022).
Shaik, S., Ramanan, R., Danovich, D. & Mandal, D. Structure and reactivity/selectivity control by oriented-external electric fields. Chem. Soc. Rev. 47, 5125–5145 (2018).
Shaik, S., Danovich, D., Joy, J., Wang, Z. & Stuyver, T. Electric-field mediated chemistry: uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. J. Am. Chem. Soc. 142, 12551–12562 (2020).
Shaik, S., Mandal, D. & Ramanan, R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 8, 1091–1098 (2016).
Dief, E. M. & Darwish, N. SARS-CoV-2 spike proteins react with Au and Si, are electrically conductive and denature at 3 × 108 V m−1: a surface bonding and a single-protein circuit study. Chem. Sci. 14, 3428–3440 (2023).
Aragonès, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016).
Monfette, S. & Fogg, D. E. Equilibrium ring-closing metathesis. Chem. Rev. 109, 3783–3816 (2009).
Frisch, M. J. et al. Gaussian 09 (Gaussian, 2013).
Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).
Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998).