sábado, novembro 23, 2024
HomeNanotechnologyNew microchip captures exosomes for faster, more sensitive lung cancer detection from...

New microchip captures exosomes for faster, more sensitive lung cancer detection from a blood draw


Faster, more sensitive lung cancer detection from a blood draw
The twisted disk shape of the gold nanoparticle creates chirality, or asymmetry, ensuring strong interaction with light. The less than 100 nanometer-wide cavity in the center helps the nanoparticle capture exosomes. Credit: University of Michigan

A new way of diagnosing lung cancer with a blood draw is 10 times faster and 14 times more sensitive than earlier methods, according to University of Michigan researchers.

The microchip developed at U-M captures exosomes—tiny packages released by cells—from blood plasma to identify signs of lung cancer.

Once thought to be trash ejected from cells for cleanup, researchers have discovered in the past decade that exosomes are tiny parcels containing proteins or DNA and RNA fragments that are valuable for communication between cells. Although healthy cell exosomes move important signals throughout the body, cancer cell exosomes can help tumors spread by preparing tissues to accept before they arrive.

“Cancer exosomes leaving the go out and kind of prepare the soil. Later, the cancer cell seeds are shed from the tumor and travel through the bloodstream to plant in the conditioned soil and start to grow,” said Sunitha Nagrath, U-M professor of chemical and biomedical engineering and co-corresponding author of the study in the journal Matter.

Exosomes carry proteins both inside the parcel and on their outside surface. Like many biological molecules, these surface proteins are chiral—meaning they have a right- or left-handed twist—which causes them to interact with light in unique ways.

Faster, more sensitive lung cancer detection from a blood draw
A scanning electron microscope image of chiral gold nanoparticles developed for a new microfluidic chip capable of detecting signatures of lung cancer from blood plasma samples. Image dimensions are 2 x 2 micrometers (2000 x 2000 nanometers). Credit: Matter (2024). DOI: 10.1016/j.matt.2024.09.005

In cancer exosomes, surface proteins are often mutated, meaning a genetic change altered the order of the molecules that make up the . Mutations subtly change the shape of the protein, which also shifts its chirality.

These differences can be spotted through interactions with twisted—or circularly polarized—light, which can match the twist in the protein. The resonance creates a strong signal returned to a light detector. However, these light signatures are typically weak and hard to interpret. Furthermore, exosomes must be extracted from a to do this kind of detection. This is tricky because exosomes are small—measuring just 30 to 200 nanometers (a millionth of a millimeter).

To spot them, the research team designed shaped like twisted disks (adapted from a structure first described in a 2022 Nature study) that capture exosomes in a central cavity. Because of a nearly perfect match in size, shape and surface chemistry, these cavities reliably catch exosomes.

With a right-handed twist, they resonate strongly with right-twisting light but don’t send back much signal if the incoming light has a left-handed twist. This different response to twisted light is known as .

The proteins on the captured exosomes, sunk into the cavity, can strengthen or reduce the intensity of the return signal depending on their shapes. Studded along the tiny channels of a microfluidic chip, the gold cavities captured exosomes from and revealed distinct signatures between samples given by healthy study participants and those with lung cancer.

New microchip uses exosomes for faster, more sensitive lung cancer detection from a blood draw
Graphical abstract. Credit: Matter (2024). DOI: 10.1016/j.matt.2024.09.005

“While I expected the optical activity of nanoparticles to be dependent on the mutations in the proteins, I was pleasantly surprised at how sensitive it was. This is due to the fact that nanoparticles are all oriented in the same way in the detection device,” said Nicholas Kotov, the Irving Langmuir Distinguished University Professor of Chemical Sciences and Engineering at U-M and co-corresponding author of the study.

The microfluidic chips, named CDEXO chips for Circular Dichroism detection of EXOsomes, may be able to distinguish among specific mutations, helping doctors make treatment decisions to target the dominant mutations as they change.

The researchers envision that the CDEXO chip will first be used alongside traditional diagnostic methods. As trust in the technology develops, the chip could be used to screen for other cancers to improve early detection.

“As a next step, we want to look at most known solid tumor mutated proteins to understand how their spectral signatures are different. From here, we can push the technology to further increase those spectral differences to distinguish between proteins,” Nagrath said.

More information:
Yoon-Tae Kang et al, Chiroptical detection and mutation analysis of cancer-associated extracellular vesicles using microfluidics with oriented chiral nanoparticles, Matter (2024). DOI: 10.1016/j.matt.2024.09.005

Citation:
New microchip captures exosomes for faster, more sensitive lung cancer detection from a blood draw (2024, October 3)
retrieved 3 October 2024
from https://phys.org/news/2024-10-microchip-captures-exosomes-faster-sensitive.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



RELATED ARTICLES
- Advertisment -
Google search engine

Most Popular

Recent Comments