Kress, B. & Starner, T. A review of head-mounted displays (HMD) technologies and applications for consumer electronics. Photonic Appl. Aerosp. Commer. Harsh Environ. 8720, 62–74 (2013).
Olsson, M. I. Wearable device with input and output structures. US patent 20,130,044,042 (2011).
Zheng, Z., Liu, X., Li, H. & Xu, L. Design and fabrication of an off-axis see-through head-mounted display with an x–y polynomial surface. Appl. Opt. 49, 3661–3668 (2010).
Wei, L., Li, Y., Jing, J., Feng, L. & Zhou, J. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface. Opt. Express 26, 8550–8565 (2018).
Wu, J. Y. & Kim, J. Prescription AR: a fully-customized prescription-embedded augmented reality display. Opt. Express 28, 6225–6241 (2020).
Huang, H. & Hua, H. High-performance integral-imaging-based light field augmented reality display using freeform optics. Opt. Express 26, 17578–17590 (2018).
Maimone, A., Georgiou, A. & Kollin, J. S. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 36, 85 (2017).
Jang, C. et al. Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina. ACM Trans. Graph. 36, 190 (2017).
Kim, S. B. & Park, J. H. Optical see-through Maxwellian near-to-eye display with an enlarged eyebox. Opt. Lett. 43, 767–770 (2018).
Maimone, A. et al. Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources. ACM Trans. Graph. 33, 89 (2014).
Jeong, J. et al. Holographically printed freeform mirror array for augmented reality near-eye display. IEEE Photonics Technol. Lett. 32, 991–994 (2020).
Lee, B., Jo, Y., Yoo, D. & Lee, J. Recent progresses of near-eye display for AR and VR. In Multimodal Sensing and Artificial Intelligence: Technologies and Applications II (ed. Stella, E.) vol. 11785, 1178503. International Society for Optics and Photonics (SPIE, 2021).
Kress, B. C. Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets (Society of Photo-Optical Instrumentation Engineers, 2020).
Levola, T. 7.1: Invited paper: novel diffractive optical components for near to eye displays. In SID Symposium Digest of Technical Papers, vol. 37, 64–67 (Wiley Online Library, 2006).
Kress, B. C. & Chatterjee, I. Waveguide combiners for mixed reality headsets: a nanophotonics design perspective. Nanophotonics 10, 41–74 (2021).
Amitai, Y. Substrate-guided optical devices. US patent 7,672,055 (2010).
Ding, Y. et al. Waveguide-based augmented reality displays: perspectives and challenges. eLight 3, 24 (2023).
Cheng, D., Wang, Y., Xu, C., Song, W. & Jin, G. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics. Opt. Express 22, 20705–20719 (2014).
Xu, M. & Hua, H. Methods of optimizing and evaluating geometrical light guides with microstructure mirrors for augmented reality displays. Opt. Express 27, 5523–5543 (2019).
Äyräs, P., Saarikko, P. & Levola, T. Exit pupil expander with a large field of view based on diffractive optics. J. Soc. Inf. Disp. 17, 659–664 (2009).
Yeoh, I. L. Wavelength multiplexing in waveguides. US patent 0,329,075 (2017).
Saarikko, P. Waveguide. US patent 0,231,568 (2016).
Yang, Q., Ding, Y. & Wu, S. T. Full-color, wide field-of-view single-layer waveguide for augmented reality displays. J. Soc. Inf. Disp. 32, 247–254 (2024).
Ding, Y., Li, Y., Yang, Q. & Wu, S. T. Design optimization of polarization volume gratings for full-color waveguide-based augmented reality displays. J. Soc. Inf. Disp. 31, 380–386 (2023).
Gu, Y. et al. A study of the field of view performance for full-color waveguide displays based on polarization volume gratings. Crystals 12, 1805 (2022).
Guo, Q., Zhang, S., Zhang, J. & Chen, C. P. Design of single-layer color echelle grating optical waveguide for augmented-reality display. Opt. Express 31, 3954–3969 (2023).
Gopakumar, M. et al. Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature 629, 791–797 (2024).
Deng, Z. L., Zhang, S. & Wang, G. P. Wide-angled off-axis achromatic metasurfaces for visible light. Opt. Express 24, 23118–23128 (2016).
Huang, L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12, 5750–5755 (2012).
Escuti, M. J., Kim, J. & Kudenov, M. W. Controlling light with geometric-phase holograms. Opt. Photonics News 27, 22–29 (2016).
Luo, W., Xiao, S., He, Q., Sun, S. & Zhou, L. Photonic spin Hall effect with nearly 100% efficiency. Adv. Opt. Mater. 3, 1102–1108 (2015).
Song, N. et al. Broadband achromatic metasurfaces for longwave infrared applications. Nanomaterials 11, 2760 (2021).
Devlin, R. C., Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl Acad. Sci. USA 113, 10473–10478 (2016).
Hecht, E. in Optics Ch. 4 (Pearson Edu. Press, 2017).
Azzam, R. M. A. Circular and near-circular polarization states of evanescent monochromatic light fields in total internal reflection. Appl. Opt. 50, 6272–6276 (2011).
Xiong, J. & Wu, S. T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight 1, 3 (2021).
Chen, W. T. et al. Dispersion-engineered metasurfaces reaching broadband 90% relative diffraction efficiency. Nat. Commun. 14, 2544 (2023).
Kim, S., Kim, J., Kim, K., Jeong, M. & Rho, J. Anti-aliased metasurfaces beyond the Nyquist limit. Nat. Commun. 16, 411 (2025).
Brown, R. D. Transparent waveguide display. EP patent 2,733,517 (2014).
Grey, D. Exit pupil expanding diffractive optical waveguide device. US patent 10,359,635 (2019).
Cheng, D. et al. Design and manufacture AR head-mounted displays: a review and outlook. Light Adv. Manuf. 2, 350–369 (2021).
Liu, S. et al. Waveguide using grating coupler for uniform luminance and color AR display. In Optical Design and Testing X, vol. 11548, 74–80 (SPIE, 2022).
Ni, D. et al. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization. Opt. Express 30, 24523–24543 (2022).
Wall, R. A. Waveguide-based displays with exit pupil expander. US patent 10,025,093 (2017).
Abovitz, R. Planar waveguide apparatus with diffraction element(s) and system employing same. US patent 9,671,566 (2015).
Maikisch, J. S. & Gaylord, T. K. Optimum parallel-face slanted surface-relief gratings. Appl. Opt. 46, 3674–3681 (2007).
Jin, G. et al. High efficiency polarization-independent slanted grating for RGB bands. IEEE Photonics J. 13, 1–8 (2021).
Levola, T. Diffractive optics for virtual reality displays. J. Soc. Inf. Disp. 14, 467–475 (2006).
Liu, Y. et al. Slanted TiO2 metagratings for large-angle, high-efficiency anomalous refraction in the visible. Laser Photonics Rev. 17, 2200712 (2023).
Li, T., Cao, L., He, Q. & Jin, G. Slanted volume holographic gratings design based on rigorous coupled-wave analysis. In Holography, Diffractive Optics, and Applications V, vol. 8556, 105–112 (SPIE, 2012).
Kim, J. et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater. 22, 474–481 (2023).
Kim, J. et al. A water-soluble label for food products prevents packaging waste and counterfeiting. Nat. Food 5, 293–300 (2024).
Kim, J. et al. Amorphous to crystalline transition in nanoimprinted sol–gel titanium oxide metasurfaces. Adv. Mater. 37, 2405378 (2025).
Kim, J. et al. Wafer-scale, centimeter-sized, high-efficiency metalenses in the ultraviolet. Mater. Today 73, 9–15 (2024).
Kim, J. et al. One-step printable platform for high-efficiency metasurfaces down to the deep-ultraviolet region. Light Sci. Appl. 12, 68 (2023).
Choi, M. et al. Roll-to-plate printable RGB achromatic metalens for wide-field-of-view holographic near-eye displays. Nat. Mater. 24, 535–543 (2025).