segunda-feira, abril 21, 2025
HomeNanotechnologyBiomaterial-based drug delivery systems in the treatment of inner ear disorders |...

Biomaterial-based drug delivery systems in the treatment of inner ear disorders | Journal of Nanobiotechnology


  • Mahshid SS, Higazi AM, Ogier JM, Dabdoub A. Extracellular biomarkers of inner ear disease and their potential for point-of-care diagnostics. Adv Sci (Weinh). 2022;9:e2104033.

    Article 
    PubMed 

    Google Scholar
     

  • Chadha S, Kamenov K, Cieza A. The world report on hearing, 2021. Bull World Health Organ. 2021;99:242–A242.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su YT, Guo YB, Cheng YP, Zhang X, Xie XP, Chang YM, Bao JX. Hyperbaric oxygen treatment ameliorates hearing loss and auditory cortex injury in noise exposed mice by repressing local ceramide accumulation. Int J Mol Sci. 2019;20.

  • Brock PR, Maibach R, Childs M, Rajput K, Roebuck D, Sullivan MJ, Laithier V, Ronghe M, Dall’Igna P, Hiyama E, et al. Sodium thiosulfate for protection from cisplatin-induced hearing loss. N Engl J Med. 2018;378:2376–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Fang Q, Wang H, Qi J, Sun S, Liao M, Wu Y, Hu Y, Jiang P, Cheng C, et al. Increased mitophagy protects cochlear hair cells from aminoglycoside-induced damage. Autophagy. 2023;19:75–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian L, He L, Jackson K, Saif A, Khan S, Wan Z, Didar TF, Hosseinidoust Z. Self-assembling nanofibrous bacteriophage microgels as sprayable antimicrobials targeting multidrug-resistant bacteria. Nat Commun. 2022;13:7158.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian L, Jackson K, He L, Khan S, Thirugnanasampanthar M, Gomez M, Bayat F, Didar TF, Hosseinidoust Z. High-throughput fabrication of antimicrobial phage microgels and example applications in food decontamination. Nat Protoc. 2024;19:1591–622.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korver AM, Smith RJ, Van Camp G, Schleiss MR, Bitner-Glindzicz MA, Lustig LR, Usami SI, Boudewyns AN. Congenital hearing loss. Nat Rev Dis Primers. 2017;3:16094.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyberg S, Abbott NJ, Shi X, Steyger PS, Dabdoub A. Delivery of therapeutics to the inner ear: the challenge of the blood-labyrinth barrier. Sci Transl Med. 2019;11.

  • Fritzsch B, Silos-Santiago I, Bianchi LM, Fariñas I. The role of neurotrophic factors in regulating the development of inner ear innervation. Trends Neurosci. 1997;20:159–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Luo J, Lin X, Tan J, Li P. Nanomaterials for inner ear diseases: challenges, limitations and opportunities. Mater (Basel). 2022;15.

  • Zhang H, Chen H, Lu L, Wang H, Zhao Y, Chai R. Natural multifunctional silk microcarriers for noise-induced hearing loss therapy. Adv Sci (Weinh). 2024;11:e2305215.

    Article 
    PubMed 

    Google Scholar
     

  • Takeda H, Dondzillo A, Randall JA, Gubbels SP. Challenges in cell-based therapies for the treatment of hearing loss. Trends Neurosci. 2018;41:823–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan X, Li Y, Huang P, Staecker H, He M. Extracellular vesicles for developing targeted hearing loss therapy. J Control Release. 2024;366:460–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Y, Wise AK, Shepherd RK, Richardson RT. New molecular therapies for the treatment of hearing loss. Pharmacol Ther. 2019;200:190–209.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang L, Wang D, He Y, Shu Y. Advances in gene therapy hold promise for treating hereditary hearing loss. Mol Ther. 2023;31:934–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Sun L, Wang Y, Cai L, Zhao Y, Shang L. Biomimetic air purification with liquid-gating topological gradient microfluidics. Nat Chem Eng. 2024;1:650–60.

    Article 

    Google Scholar
     

  • Shan J, Che J, Song C, Zhao Y. Emerging antibacterial nanozymes for wound healing. Smart Med. 2023;2:e20220025.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian L, He L, Jackson K, Mahabir R, Hosseinidoust Z. Bacteria repellent protein hydrogel decorated with tunable, isotropic, nano-on-micro hierarchical microbump array. Chem Commun (Camb). 2021;57:10883–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Lu M, Cao X, Zhao Y. Functional microneedles for wearable electronics. Smart Med. 2023;2:e20220023.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swan EE, Mescher MJ, Sewell WF, Tao SL, Borenstein JT. Inner ear drug delivery for auditory applications. Adv Drug Deliv Rev. 2008;60:1583–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koushik TM, Miller CM, Antunes E. Bone tissue engineering scaffolds: function of multi-material hierarchically structured scaffolds. Adv Healthc Mater. 2023;12:e2202766.

    Article 
    PubMed 

    Google Scholar
     

  • Glueckert R, Johnson Chacko L, Rask-Andersen H, Liu W, Handschuh S, Schrott-Fischer A. Anatomical basis of drug delivery to the inner ear. Hear Res. 2018;368:10–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Chao T, Brant J, O’Malley B Jr., Tsourkas A, Li D. Advances in nano-based inner ear delivery systems for the treatment of sensorineural hearing loss. Adv Drug Deliv Rev. 2017;108:2–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu S, Wang S, Zou L, Xiong W. Mechanisms in cochlear hair cell mechano-electrical transduction for acquisition of sound frequency and intensity. Cell Mol Life Sci. 2021;78:5083–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Driver EC, Kelley MW. Development of the cochlea. Development. 2020;147.

  • White HJ, Helwany M, Biknevicius AR, Peterson DC. Anatomy, Head and Neck, Ear Organ of Corti. In StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Muhammad Helwany declares no relevant financial relationships with ineligible companies. Disclosure: Audrone Biknevicius declares no relevant financial relationships with ineligible companies. Disclosure: Diana Peterson declares no relevant financial relationships with ineligible companies.: StatPearls Publishing Copyright © 2025, StatPearls Publishing LLC.; 2025.

  • Dubrulle F, Chaton V, Risoud M, Farah H, Charley Q, Vincent C. The round window sign: a sensitive sign to detect perilymphatic fistulae on delayed postcontrast 3D-FLAIR sequence. Eur Radiol. 2020;30:6303–10.

    Article 
    PubMed 

    Google Scholar
     

  • Rathnam C, Chueng SD, Ying YM, Lee KB, Kwan K. Developments in bio-inspired nanomaterials for therapeutic delivery to treat hearing loss. Front Cell Neurosci. 2019;13:493.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holley MC. Keynote review: the auditory system, hearing loss and potential targets for drug development. Drug Discov Today. 2005;10:1269–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pararas EE, Borkholder DA, Borenstein JT. Microsystems technologies for drug delivery to the inner ear. Adv Drug Deliv Rev. 2012;64:1650–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lynch ED, Kil J. Compounds for the prevention and treatment of noise-induced hearing loss. Drug Discov Today. 2005;10:1291–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borenstein JT. Intracochlear drug delivery systems. Expert Opin Drug Deliv. 2011;8:1161–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sendowski I, Abaamrane L, Raffin F, Cros A, Clarençon D. Therapeutic efficacy of intra-cochlear administration of methylprednisolone after acoustic trauma caused by gunshot noise in Guinea pigs. Hear Res. 2006;221:119–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rybak LP. Mechanisms of cisplatin ototoxicity and progress in otoprotection. Curr Opin Otolaryngol Head Neck Surg. 2007;15:364–9.

    Article 
    PubMed 

    Google Scholar
     

  • Rybak LP, Whitworth CA. Ototoxicity: therapeutic opportunities. Drug Discov Today. 2005;10:1313–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rybak LP, Ramkumar V. Ototoxicity. Kidney Int. 2007;72:931–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res. 2007;226:157–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Autoimmune sensorineural hearing loss. Lancet. 1980;1:187.


    Google Scholar
     

  • Matteson EL, Fabry DA, Strome SE, Driscoll CL, Beatty CW, McDonald TJ. Autoimmune inner ear disease: diagnostic and therapeutic approaches in a multidisciplinary setting. J Am Acad Audiol. 2003;14:225–30.

    Article 
    PubMed 

    Google Scholar
     

  • Pathak S, Vambutas A. Autoimmune inner ear disease patient-associated 28-kDa proinflammatory IL-1β fragment results from caspase-7-mediated cleavage in vitro. JCI Insight. 2020;5.

  • Shamriz O, Tal Y, Gross M. Autoimmune inner ear disease: immune biomarkers, audiovestibular aspects, and therapeutic modalities of Cogan’s syndrome. J Immunol Res. 2018;2018:1498640.

  • Komune S, Snow JB Jr. Ototoxicity of Kanamycin sulfate and the barriers in the inner ear. Otolaryngol Head Neck Surg. 1981;89:1013–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen GD, Daszynski DM, Ding D, Jiang H, Woolman T, Blessing K, Kador PF, Salvi R. Novel oral multifunctional antioxidant prevents noise-induced hearing loss and hair cell loss. Hear Res. 2020;388:107880.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson WR, Byl FM, Laird N. The efficacy of steroids in the treatment of idiopathic sudden hearing loss. A double-blind clinical study. Arch Otolaryngol. 1980;106:772–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chandrasekhar SS, Tsai Do BS, Schwartz SR, Bontempo LJ, Faucett EA, Finestone SA, Hollingsworth DB, Kelley DM, Kmucha ST, Moonis G, et al. Clinical practice guideline: sudden hearing loss (Update). Otolaryngol Head Neck Surg. 2019;161:S1–45.

    PubMed 

    Google Scholar
     

  • Graham MD, Sataloff RT, Kemink JL. Titration streptomycin therapy for bilateral Meniere’s disease: a preliminary report. Otolaryngol Head Neck Surg. 1984;92:440–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sajjadi H, Paparella MM. Meniere’s disease. Lancet. 2008;372:406–14.

    Article 
    PubMed 

    Google Scholar
     

  • Balyan FR, Taibah A, De Donato G, Aslan A, Falcioni M, Russo A, Sanna M. Titration streptomycin therapy in Meniere’s disease: long-term results. Otolaryngol Head Neck Surg. 1998;118:261–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCall AA, Swan EE, Borenstein JT, Sewell WF, Kujawa SG, McKenna MJ. Drug delivery for treatment of inner ear disease: current state of knowledge. Ear Hear. 2010;31:156–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang C, Yu Y, Shang L, Zhao Y. Flexible hemline-shaped microfibers for liquid transport. Nat Chem Eng. 2024;1:87–96.

    Article 

    Google Scholar
     

  • Mirsalehi M, Ghajarzadeh M, Farhadi M, Akbarnejad Z, Ahmadi S, Salem MM. Intratympanic corticosteroid injection as a first-line treatment of the patients with idiopathic sudden sensorineural hearing loss compared to systemic steroid: a systematic review and meta-analysis. Am J Otolaryngol. 2022;43:103505.

    Article 
    PubMed 

    Google Scholar
     

  • Jackson LE, Silverstein H. Chemical perfusion of the inner ear. Otolaryngol Clin North Am. 2002;35:639–53.

    Article 
    PubMed 

    Google Scholar
     

  • Rauch SD, Halpin CF, Antonelli PJ, Babu S, Carey JP, Gantz BJ, Goebel JA, Hammerschlag PE, Harris JP, Isaacson B, et al. Oral vs intratympanic corticosteroid therapy for idiopathic sudden sensorineural hearing loss: a randomized trial. JAMA. 2011;305:2071–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung SY, Kim S, Kang Z, Kwon S, Lee J, Park JW, Kim KS, Kim DK. Efficiency of a dexamethasone nanosuspension as an intratympanic injection for acute hearing loss. Drug Deliv. 2022;29:149–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang W, Cai L, Gan J, Zhao Y. Photothermal responsive porous hollow microneedles as Chinese medicine versatile delivery system for wound healing. Smart Med. 2024;3:e20240007.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suryanarayanan R, Cook JA. Long-term results of gentamicin inner ear perfusion in Ménière’s disease. J Laryngol Otol. 2004;118:489–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bowe SN, Jacob A. Round window perfusion dynamics: implications for intracochlear therapy. Curr Opin Otolaryngol Head Neck Surg. 2010;18:377–85.

    Article 
    PubMed 

    Google Scholar
     

  • Li L, Ren J, Yin T, Liu W. Intratympanic dexamethasone perfusion versus injection for treatment of refractory sudden sensorineural hearing loss. Eur Arch Otorhinolaryngol. 2013;270:861–7.

    Article 
    PubMed 

    Google Scholar
     

  • Hoffer ME, Kopke RD, Weisskopf P, Gottshall K, Allen K, Wester D. Microdose gentamicin administration via the round window microcatheter: results in patients with Meniere’s disease. Ann N Y Acad Sci. 2001;942:46–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sale PJP, Uschakov A, Saief T, Rowe DP, Abbott CJ, Luu CD, Hampson AJ, O’Leary SJ, Sly DJ. Cannula-based drug delivery to the Guinea pig round window causes a lasting hearing loss that may be temporarily mitigated by BDNF. Hear Res. 2017;356:104–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malfeld K, Baumhoff P, Volk HA, Lenarz T, Scheper V. Local long-term inner ear drug delivery in normal hearing guinea pig-an animal model to develop preventive treatment for noise-induced hearing loss. Biomolecules. 2022;12.

  • Schwieger J, Frisch AS, Rau TS, Lenarz T, Hügl S, Scheper V. 3D printed cell culture chamber for testing the effect of pump-based chronic drug delivery on inner ear tissue. Biomolecules. 2022;12.

  • Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1999;88:948.

    CAS 
    PubMed 

    Google Scholar
     

  • Leong S, Aksit A, Feng SJ, Kysar JW, Lalwani AK. Inner ear diagnostics and drug delivery via microneedles. J Clin Med. 2022;11.

  • Aksit A, Rastogi S, Nadal ML, Parker AM, Lalwani AK, West AC, Kysar JW. Drug delivery device for the inner ear: ultra-sharp fully metallic microneedles. Drug Deliv Transl Res. 2021;11:214–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo X, Yang L, Cui Y. Microneedles: materials, fabrication, and biomedical applications. Biomed Microdevices. 2023;25:20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed S, Al-Japairai K, Mahmood S, Hamed Almurisi S, Reddy Venugopal J, Rebhi Hilles A, Azmana M, Raman S. Current trends in polymer microneedle for transdermal drug delivery. Int J Pharm. 2020;587:119673.

    Article 

    Google Scholar
     

  • Pawley DC, Goncalves S, Bas E, Dikici E, Deo SK, Daunert S, Telischi F. Dexamethasone (DXM)-coated poly(lactic-co-glycolic acid) (PLGA) microneedles as an improved drug delivery system for intracochlear biodegradable devices. Adv Ther. 2021;4:2100155.

    Article 
    CAS 

    Google Scholar
     

  • Leong S, Aksit A, Szeto B, Feng SJ, Ji X, Soni RK, Olson ES, Kysar JW, Lalwani AK. Anatomic, physiologic, and proteomic consequences of repeated microneedle-mediated perforations of the round window membrane. Hear Res. 2023;432:108739.

    Article 
    PubMed 

    Google Scholar
     

  • Chikar JA, Hendricks JL, Richardson-Burns SM, Raphael Y, Pfingst BE, Martin DC. The use of a dual PEDOT and RGD-functionalized alginate hydrogel coating to provide sustained drug delivery and improved cochlear implant function. Biomaterials. 2012;33:1982–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Guo J, Cao X, Zhao Y. Developing conductive hydrogels for biomedical applications. Smart Med. 2024;3:e20230023.

    Article 
    PubMed 

    Google Scholar
     

  • Chen G, Wang F, Zhang X, Shang Y, Zhao Y. Living microecological hydrogels for wound healing. Sci Adv. 2023;9:eadg3478.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coviello T, Matricardi P, Alhaique F. Drug delivery strategies using polysaccharidic gels. Expert Opin Drug Deliv. 2006;3:395–404.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface. 2007;4:999–1030.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noushi F, Richardson RT, Hardman J, Clark G, O’Leary S. Delivery of neurotrophin-3 to the cochlea using alginate beads. Otol Neurotol. 2005;26:528–33.

    Article 
    PubMed 

    Google Scholar
     

  • Endo T, Nakagawa T, Kita T, Iguchi F, Kim TS, Tamura T, Iwai K, Tabata Y, Ito J. Novel strategy for treatment of inner ears using a biodegradable gel. Laryngoscope. 2005;115:2016–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen K, Wang F, Ding R, Cai Z, Zou T, Zhang A, Guo D, Ye B, Cui W, Xiang M. Adhesive and injectable hydrogel microspheres for inner ear treatment. Small. 2022;18:e2106591.

    Article 
    PubMed 

    Google Scholar
     

  • Wang J, Wang C, Wang Q, Zhang Z, Wang H, Wang S, Chi Z, Shang L, Wang W, Shu Y. Microfluidic preparation of gelatin methacryloyl microgels as local drug delivery vehicles for hearing loss therapy. ACS Appl Mater Interfaces. 2022;14:46212–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng B, Dong T, Song X, Zheng X, Jin C, Cheng Z, Liu Y, Zhang W, Wang X, Tao Y, Wu H. Personalized porous gelatin methacryloyl sustained-release nicotinamide protects against noise-induced hearing loss. Adv Sci (Weinh). 2024;11:e2305682.

    Article 
    PubMed 

    Google Scholar
     

  • Chen G, Zhang X, Yang F, Mu L. Disposition of nanoparticle-based delivery system via inner ear administration. Curr Drug Metab. 2010;11:886–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang D, Cai L, Li N, Zhao Y. Ultrasound-trigged micro/nanorobots for biomedical applications. Smart Med. 2023;2:e20230003.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaudoin C, Agnely F, Nguyen Y, Ferrary E, Bochot A. Nanocarriers for drug delivery to the inner ear: physicochemical key parameters, biodistribution, safety and efficacy. Int J Pharm. 2021;592:120038.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Z, Han Z, Naveena K, Lei G, Qiu S, Li X, Li T, Shi X, Zhuang W, Li Y, et al. ROS-responsive nanoparticle as a berberine carrier for OHC-targeted therapy of noise-induced hearing loss. ACS Appl Mater Interfaces. 2021;13:7102–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Wise AK, Tan J, Maina JW, Shepherd RK, Caruso F. Mesoporous silica supraparticles for sustained inner-ear drug delivery. Small. 2014;10:4244–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu K, Du Y, Xu B, Huang Y, Feng W, Yu D, Chen Y, Wang X. Gelatin-encapsulated tetrahedral DNA nanostructure enhances cellular internalization for treating noise-induced hearing loss. Small. 2024;20:e2310604.

  • Gao G, Liu Y, Zhou CH, Jiang P, Sun JJ. Solid lipid nanoparticles loaded with edaravone for inner ear protection after noise exposure. Chin Med J (Engl). 2015;128:203–9.

    Article 
    PubMed 

    Google Scholar
     

  • Martín-Saldaña S, Palao-Suay R, Aguilar MR, García-Fernández L, Arévalo H, Trinidad A, Ramírez-Camacho R. San Román J: pH-sensitive polymeric nanoparticles with antioxidant and anti-inflammatory properties against cisplatin-induced hearing loss. J Control Release. 2018;270:53–64.

    Article 
    PubMed 

    Google Scholar
     

  • Szeto B, Chiang H, Valentini C, Yu M, Kysar JW, Lalwani AK. Inner ear delivery: challenges and opportunities. Laryngoscope Investig Otolaryngol. 2020;5:122–31.

    Article 
    PubMed 

    Google Scholar
     

  • Hao J, Li SK. Inner ear drug delivery: recent advances, challenges, and perspective. Eur J Pharm Sci. 2019;126:82–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Ceulaer G, Johnson S, Yperman M, Daemers K, Offeciers FE, O’Donoghue GM, Govaerts PJ. Long-term evaluation of the effect of intracochlear steroid deposition on electrode impedance in cochlear implant patients. Otol Neurotol. 2003;24:769–74.

    Article 
    PubMed 

    Google Scholar
     

  • Prenzler NK, Salcher R, Lenarz T, Gaertner L, Warnecke A. Dose-dependent transient decrease of impedances by deep intracochlear injection of triamcinolone with a cochlear catheter prior to cochlear implantation-1 year data. Front Neurol. 2020;11:258.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macherey O, Carlyon RP. Cochlear implants. Curr Biol. 2014;24:R878–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan ML, Ulfendahl M, Laurell G, Counter SA, Pyykkö I, Borg E, Rosenhall U. Protection and treatment of sensorineural hearing disorders caused by exogenous factors: experimental findings and potential clinical application. Hear Res. 2002;169:169–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Astolfi L, Guaran V, Marchetti N, Olivetto E, Simoni E, Cavazzini A, Jolly C, Martini A. Cochlear implants and drug delivery: in vitro evaluation of dexamethasone release. J Biomed Mater Res B Appl Biomater. 2014;102:267–73.

    Article 
    PubMed 

    Google Scholar
     

  • Mukherjee S, Kuroiwa M, Oakden W, Paul BT, Noman A, Chen J, Lin V, Dimitrijevic A, Stanisz G, Le TN. Local magnetic delivery of adeno-associated virus AAV2(quad Y-F)-mediated BDNF gene therapy restores hearing after noise injury. Mol Ther. 2022;30:519–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinyon JL, Tadros SF, Froud KE, AC YW, Tompson IT, Crawford EN, Ko M, Morris R, Klugmann M, Housley GD. Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear. Sci Transl Med. 2014;6:233ra254.

    Article 

    Google Scholar
     

  • Duan YY, Clark GM, Cowan RS. A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo. Biomaterials. 2004;25:3813–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richardson RT, Wise AK, Thompson BC, Flynn BO, Atkinson PJ, Fretwell NJ, Fallon JB, Wallace GG, Shepherd RK, Clark GM, O’Leary SJ. Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials. 2009;30:2614–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borre ED, Kaalund K, Frisco N, Zhang G, Ayer A, Kelly-Hedrick M, Reed SD, Emmett SD, Francis H, Tucci DL, et al. The impact of hearing loss and its treatment on health-related quality of life utility: a systematic review with meta-analysis. J Gen Intern Med. 2023;38:456–79.

    Article 
    PubMed 

    Google Scholar
     

  • Yeo BSY, Song H, Toh EMS, Ng LS, Ho CSH, Ho R, Merchant RA, Tan BKJ, Loh WS. Association of hearing aids and cochlear implants with cognitive decline and dementia: a systematic review and meta-analysis. JAMA Neurol. 2023;80:134–41.

    Article 
    PubMed 

    Google Scholar
     

  • Kim ES, Gustenhoven E, Mescher MJ, Pararas EE, Smith KA, Spencer AJ, Tandon V, Borenstein JT, Fiering J. A microfluidic reciprocating intracochlear drug delivery system with reservoir and active dose control. Lab Chip. 2014;14:710–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Zhao Y, Li J, Guo M, Wan J, Weitz DA, Stone HA. Reactions in double emulsions by flow-controlled coalescence of encapsulated drops. Lab Chip. 2011;11:2312–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo J, Yu Y, Cai L, Wang Y, Shi K, Shang L, Pan J, Zhao Y. Microfluidics for flexible electronics. Mater Today. 2021;44:105–35.

    Article 
    CAS 

    Google Scholar
     

  • Shang L, Yu Y, Gao W, Wang Y, Qu L, Zhao Z, Chai R, Zhao Y. Bio-inspired anisotropic wettability surfaces from dynamic ferrofluid assembled templates. Adv Funct Mater. 2018;28:1705802.

    Article 

    Google Scholar
     

  • Ye B, Rong F, Gu H, Xie Z, Cheng Y, Zhao Y, Gu Z. Bioinspired angle-independent photonic crystal colorimetric sensing. Chem Commun (Camb). 2013;49:5331–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Kujawa SG, McKenna MJ, Fiering JO, Mescher MJ, Borenstein JT, Swan EE, Sewell WF. Inner ear drug delivery via a reciprocating perfusion system in the Guinea pig. J Control Release. 2005;110:1–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tandon V, Kang WS, Robbins TA, Spencer AJ, Kim ES, McKenna MJ, Kujawa SG, Fiering J, Pararas EE, Mescher MJ, et al. Microfabricated reciprocating micropump for intracochlear drug delivery with integrated drug/fluid storage and electronically controlled dosing. Lab Chip. 2016;16:829–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Y, Kong B, Liu R, Zhao Y. Developing biomedical engineering technologies for reproductive medicine. Smart Med. 2022;1:e20220006.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Chen G, Yu Y, Guo J, Tan Q, Zhao Y. Microfluidic printing of slippery textiles for medical drainage around wounds. Adv Sci (Weinh). 2020;7:2000789.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Creff G, Bernard-Le Liboux N, Coudert P, Bourdon H, Pean V, Wallaert N, Lambert C, Godey B. Tonotopic and default frequency fitting for music perception in cochlear implant recipients: a randomized clinical trial. JAMA Otolaryngol Head Neck Surg. 2024;150:960–8.

    Article 
    PubMed 

    Google Scholar
     

  • van Heteren JAA, Wendrich AW, Peters JPM, Grolman W, Stokroos RJ, Smit AL. Speech perception in noise after cochlear implantation for single-sided deafness: a randomized clinical trial. JAMA Otolaryngol Head Neck Surg. 2025;151:211–9.

    Article 
    PubMed 

    Google Scholar
     

  • Vogel A, Saborowski A, Wenzel P, Wege H, Folprecht G, Kretzschmar A, Schütt P, Jacobasch L, Ziegenhagen N, Boeck S, et al. Nanoliposomal irinotecan and fluorouracil plus leucovorin versus fluorouracil plus leucovorin in patients with cholangiocarcinoma and gallbladder carcinoma previously treated with gemcitabine-based therapies (AIO NALIRICC): a multicentre, open-label, randomised, phase 2 trial. Lancet Gastroenterol Hepatol. 2024;9:734–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments