sábado, abril 19, 2025
HomeNanotechnologyOn-demand formation of Lewis bases for efficient and stable perovskite solar cells

On-demand formation of Lewis bases for efficient and stable perovskite solar cells


  • Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hui, W. et al. Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 371, 1359–1364 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, R. et al. Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat. Energy 8, 839–849 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hou, T. et al. Methylammonium‐free ink for low‐temperature crystallization of α‐FAPbI3 perovskite. Adv. Energy Mater. 14, 2400932 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Niu, T. et al. Phase-pure α-FAPbI3 perovskite solar cells via activating lead-iodine frameworks. Adv. Mater. 36, e2309171 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Chao, L. et al. Direct and stable α-phase formation via ionic liquid solvation for formamidinium-based perovskite solar cells. Joule 6, 2203–2217 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C., Cheng, Y. B. & Ge, Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 49, 1653–1687 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castro-Mendez, A. F. et al. Tailoring interface energies via phosphonic acids to grow and stabilize cubic FAPbI3 deposited by thermal evaporation. J. Am. Chem. Soc. 14, 18459–18469 (2024).

    Article 

    Google Scholar
     

  • Sidhik, S. et al. Two-dimensional perovskite templates for durable, efficient formamidinium perovskite solar cells. Science 384, 1227–1235 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai, Y. et al. Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science 378, 747–754 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, Z. et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, S. et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bu, T. et al. Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 372, 1327–1332 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, H. et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370, eabb8985 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Z. et al. Reducing energy barrier of δ-to-α phase transition for printed formamidinium lead iodide photovoltaic devices. Nano Energy 91, 106658 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Huang, X. et al. Solvent gaming chemistry to control the quality of halide perovskite thin films for photovoltaics. ACS Cent. Sci. 8, 1008–1016 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Z. et al. Anion-π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623, 531–537 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, N. et al. Tailoring crystallization dynamics of CsPbI3 for scalable production of efficient inorganic perovskite solar cells. Adv. Funct. Mater. 34, 2309894 (2023).

    Article 

    Google Scholar
     

  • Xu, J. et al. Anion optimization for bifunctional surface passivation in perovskite solar cells. Nat. Mater. 22, 1507–1514 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, S. et al. Efficient passivation with lead pyridine‐2‐carboxylic for high‐performance and stable perovskite solar cells. Adv. Energy Mater. 9, 1901852 (2019).

    Article 

    Google Scholar
     

  • Azmi, R. et al. Double-side 2-dimensional/3-dimensional heterojunctions for inverted perovskite solar cells. Nature 628, 93–98 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, W. et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M. et al. Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability. Nat. Energy 8, 1229–1239 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Du, X. et al. Synergistic crystallization and passivation by a single molecular additive for high-performance perovskite solar cells. Adv. Mater. 34, e2204098 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zheng, Y. et al. Dual‐interface modification for inverted methylammonium‐free perovskite solar cells of 25.35% efficiency with balanced crystallization. Adv. Energy Mater. 14, 2304486 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chen, T. et al. Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite. Sci. Adv. 2, e1601650 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. S. et al. Vacuum-assisted reforming cathode interlayer orientation for efficient and stable perovskite solar cells. Nano Energy 125, 109584 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chen, P. et al. Multifunctional ytterbium oxide buffer for perovskite solar cells. Nature 625, 516–522 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, T. et al. Chiral-structured heterointerfaces enable durable perovskite solar cells. Science 384, 878–884 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M., Fei, C., Uddin, M. A. & Huang, J. Influence of voids on the thermal and light stability of perovskite solar cells. Sci. Adv. 8, eabo5977 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, S. et al. Suppressed deprotonation enables a durable buried interface in tin-lead perovskite for all-perovskite tandem solar cells. Joule 8, 2220–2237 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, L. et al. Solid additive delicately controls morphology formation and enables high‐performance in organic solar cells. Adv. Funct. Mater. 33, 202305450 (2023).

    Article 

    Google Scholar
     

  • Park, J. et al. Triadic halobenzene processing additive combined advantages of both solvent and solid types for efficient and stable organic solar cells. Small 20, e2405415 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X. et al. Backbone engineering enables highly efficient polymer hole-transporting materials for inverted perovskite solar cells. Adv. Mater. 35, e2208431 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, W. et al. Unlocking voltage potentials of mixed‐halide perovskite solar cells via phase segregation suppression. Adv. Funct. Mater. 32, 2110698 (2021).

    Article 

    Google Scholar
     

  • Liang, C. et al. Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 6, 38–45 (2020).

    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Eficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S. et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments